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1 INTRODUCTION

When the Tester Independent Support Software System (TISSS)
development was begun in the fall of 1985, TISSS was one of the
first large Ada Software development programs undertaken by
Harris Corporation and the first project to follow DOD-STD-SDS
(early version of MIL-STD-2167) methodology using Ada. The
program was completed on cost and on schedule in July, 1988, an
accomplishment that appeared extremely challenging in 1985 when
the program was awarded because of the requirement to develop new
technology on a tight schedule with a limited budget. In fact,
it was an outstanding accomplishment according to a recent
presentation given by T. Capers Jones of Software Productivity
Research, Inc., Cambridge, MA, who stated that of all software
development p ijects in the U.S. over 64K Lines of Code (LOC),
only one percent are completed on cost and on schedule. The rest
are either cancelled outright or are completed over cost and
behind schedule.

This document is the final technical report of the TISSS software
development and is intended not only to describe the technical
detail of the system design, but also to provide the reader
insight into a large Ada software development project using
MIL-STD-2167, emphasizing the various lessons learned from
contractor experience. Remaining open issues for TISSS insertion
into private industry and government use will also be discussed.

1.1 TISSS OBJECTIVE

The objective of this effort was to define, develop, and
implement a system for the automated generation and maintenance
of electrical test secifications and test programs for complex
Very High Speed Integrated Circuits (VHSIC) and other Very Large
Scale Integration (VLSI) devices. This was accomplished through
the development of the TISSS which provides a capability for the
Government to capture design data in a standardized electronic
form and use this information to develop and maintain device and
test specifications in a standardized, transportable, and
computer-accessible format and to automatically generate
Automatic Microcircuit Test Equipment (AMTE) test programs for
.lifecycle support of VHSIC and VLSI devices. This system
supplements the current MIL-M-38510 approach that is based on
manually-developed device electrical test specifications and test
programs.

This effort consisted of two phases. Under Phase I, the design
phase, Harris Corporation, Government Systems Sector, the TISSS
contractor, studied various approaches, evaluated related
software developments and defined a specification and recommended
a design approach for the implementation of a TISSS.

In Phase II, the contractor implemented the TISSS. Specific
tasks performed during this phase included:



a. The preparation of TISSS System specifications and
documentation to allow future preparation of interfaces to
various Computer Aided Design (CAD) systems for the purpose
of the derivation of the Tester Independent Data Base (TIDB)
information. Specifications and documentation to allow
translation of the TIDB into any test system language were
also prepared.

b. The development of the documentation of all software
necessary to interface and derive the TIDB from one set of
Government specified hierarchical CAD databases as well as
all software to perform automated translation of the TIDB to
a native language test program for one Government-specified
AMTE test system.

c. The development of the capability for the Government to
perform validations of additional TISSS software of either
the derivation or translation type.

d. The development of a fully operational system which enables
the Government to develop and maintain machine readable
specifications (TIDBs) for MIL-M-38510 microcircuits up to
and including VHSIC level of complexity.

1.2 BACKGROUND

The present system for specifying, qualifying, and testing high
reliability military microelectronics was designed for small and
medium scale integration microelectronics and works well for
these devices. The system is built around Government standards
and specifications such as MIL-M-38510 and MIL-STD-883, which
together, fully describe the various test requirements that are
performed on military-qualified Integrated Circuits (IC's).
Unfortunately, this methodology is inadequate for VHSIC and VLSI
devices since electrical testing is a major issue not fully
covered by the current process. Many other aspects of
MIL-M-38510/MIL-STD-883 that pertain to VHSIC are being
adequately addressed, but the approach electrical test is a major
challenge.

In addition to the difficulty associated with qualification and
specification development, there is another major and growing
problem - test generation time and its associated cost. As
devices become more complex, test generation cost increases
dramatically. This is of great concern to the DoD because the
DoD mi-st both directly and indirectly pay for test programs for
devices used in defense systems. And since there is currently
very limited test program transportability, the DoD often pays
for several dozen (perhaps even hundreds) test program
preparations for many IC's. With the great projected cost of
VHSIC test development, such continued cost duplication would be
unacceptable and must be avoided.

To address these concerns, the DoD proposed to integrate and
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automate the test specification and test generation process.
This approach takes advantage of the CAD tools used to design
IC's and minimizes the cost of generating device specifications.
It also aids in test program generation for many test systems and
minimizes the test program transportability costs while
maximizing test adequacy.

The cornerstone of this new system is the Tester Independent Data
Base (TIDB), machine-readable, device electrical test
specification information that supplements the present hardcopy
MIL-M-38510 slash specification. As it is machine-readable, it
is possible to automate the specification preparation process and
to use the data to automatically generate AMTE test programs.

2 TECHNICAL ACCOMPLISHMENTS

The tasks required in the final TISSS Statement of Work, as
amended, is included in Appendix A for reference. For each SOW
task, the following information is discussed where applicable :
description of all technical work accomplished; information
gained in performance of the contract (lessons learned);
pertinent observations; nature of problems; positive and negative
results; design criteria established; procedures followed; and
processes developed.

2.1 TISSS SOW Task (4.1.1) - Review "Pertinent Research Topics"

Each pertinent research topic item was evaluated for
applicability to the TISSS. Key concepts reviewed included:
transportability of AMTE test language, and fault simulator
environments. This work led to an open architecture for fault
simulation environments and to approach the TISSS tester and CAD
independence through a Test Description Language (TDL) based on
microcircuit oriented product specifications and test interface
specifications to standard Mil-Std-883 test procedures.

It was also determined that Automatic Test Pattern Generation
(ATPG) would not be the major emphasis of the TISSS; but rather,
validation of fault coverage was determined to be the best
feature for an open environment. ATPG is a generally difficult
problem in a well defined and controlled design environment and
thus would perform poorly in a general purpose microcircuit
qualification environment.

2.2 TISSS SOW Task (4.1.2) - investigate Existing Software
Packages

A team of evaluators was formed from different groups throughout
Harris. The available software called out in Appendix 2 to the
SOW were examined along with a variety of other software
packages. The initial evaluation time span was approximately
four months. Starting the latter part of 1984 and moving into
1985, the evaluation consisted of Data Base Management Systems,
test generators, test equipment, CAD systems, and simulators. A
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list of vendors contacted and their products are listed below.

Evaluated SOW Software

o HITS o PREP
o LASAR o ATLAS
o CADAT o ADA

The following is the list of additional vEndors contacted via
telephone or letter. The list is partitioned by subject and
alphabetized by vendor. The subjects are: Simulation/Test
Generation, CAD Systems, Test Equipment, and finally Data Base
Management Systems (DBMS's).

Simulation/Test Generation

Contacted Vendors Product Name Type

CAE System IDEAL Switch/Gate Simulation

Calma TEGAS Gate/Func. Simulation
TEXSIM Mixed-mode Simulation

CDC LOGIS Gate Simulation

Daisy DLS Mixed-mode Simulation

Fairchild INCYTE Test Generation
PREP Test Generation

Gateway Design AIDSSIM Fault Simulation
AIDSTG Test Gen/Fault Sim

GenRad HILO-2 Fault Simulation
HITEST Test Generation

HHB Softron CADAT Mixed-mode Simulation

Mentor IDEA Mixed-mode Simulation

Metheus MILO Mixed-mode Simulation

Phoenix Data LOGCAP Switch/gate Simulation

Prime Comp. THEMIS Mixed-mode Simulation

Silvar-Lisco BIMOS Mixed-mode Simulation
HELIX Mixed-mode Simulation

SimuTec SILOS Mixed-mode Simulation

Teradyne LASAR Gate/RAM/ROM Simulation

4



valid Logic SCALD Mixed-mode Simulation

Zycad LE1002 Mixed-mode (H/W Accl)

CAD Systems

Contacted Vendors System Name

Applicon BRAVO

CALMA CALMA

CAE CAE

Chromatics VLSI Designer

Computervision CADDS2/VLSI
Designer M

DAISY Megalogician

METHEUS METHEUS

Scientific Calc MEDS

SDA Design Automation SW

Valid Logic SCALDSTART

VIA Systems VIA

Test Equipment

Contacted Vendors System Name

ANDO DIC 8035B

Cybernetics Tech VIKING 200

GenRad GR16/GRI8

TAKEDA T3340

Tektronix S3270

Data Base Management Systems

Contacted vendors System Name

ORACLE Corp. Oracle



One major area of concern was simulation. The proper tools had
to be chosen to support the demanding needs of VLSI components.
Review of TISSS requirements in this area led to the following
desirable features for a simulation environment: structural and
functional modeling capability, multiple fault type type testing,
last and efficient algorithmic approach to fault simulation and
comprehensive fault simulation reporting. Other desirable
features were memory and CPU time saving simulation techniques,
support of various design for testability (DFT) techniques,
knowledge-based test generation, and a friendly user environment.

Review of the available simulation environments led to closer
examination of five environments. These were HITS, HILO-2,
HITEST, AIDSSIM, and AIDSTG.

HITS, the Hierarchical Integrated Test Simulator, is a Navy
simulator supported by the Navy Air Engineering Center in
Lakehurst, New Jersey. HITS was geared toward board level
simulation rather than VHSIC components. It fulfilled many of
the requirements stated above but fault simulation and test
pattern generation was very CPU intensive. One of the major
drawbacks was no Design for Test (DFT) support. It is difficult
to express any kind of scan design in HITS. HITS is a unit delay
simulator that supports bidirectional I/O pins. At the time of
the evaluation, HITS supported only TTL technology.

HILO-2 had more to offer in the area of simulation. It supported
other technologies, multiple logic states and strengths, nominal
delay true-value and fault simulation, and bidirectional I/O
pins.

Features between HILO-2 and AIDSSIM were compatible except that
AP.DSSIM used a fast logic/concurrent fault simulation algorithm.
HII.O-2 used parallel fault simulation and in addition, provided
limited ATPG capability whereas AIDSSIM did not, However, like
HITS there was no support for DFT techniques.

Two simulators that were evaluated, AIDSTG and HITEST, stood out
as being able to perform the majority of required functions for
VHSIC components. AIDSTG's claim was that it was a design
verification tool as well as an ATPG for any one of four scan
design disciplines. Namely, random access scan, scan set, level
sensitive scan design, and szan path. AIDSTG and AIDSSIM
together made up the test generator and fault simulation package
that appeared desirable for TI3SS.

HITEST was the most inclusive system and seemed to meet all
requirements for a simulation environment. The main feature of
HITEST was the use of a user provided knowledge data base for
describing scan designs. A suite of software packages provided
knowledge based interactive test generation and simulation
systems which coul] be connected to a variety of visually
effective graphics displays. HITEST design was based on the
.arlier implementation of HILO-2. Unfortunately, HITEST never
became a product in the time frame required by the TISSS program.
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HITS and HILO-2 were ultimately selected as the simulation
environments tc. be incorporated into TISSS. A number of factors
drove this decision. HITS was favored because it was a Navy
simulator and already used by a number of government agencies and
industry. HITS executable is very inexpensive. The major
expense for HITS is joining the User's Group, which at the time
of evaluation, was approximately $2K per year. HITS was an
acceptable board level simulator and could provide adequate
simulation. However, for LSI and VLSI components, HITS had many
shortcomings.

HITEST was the ideal simulation environment for TISSS.
Unfortunately, it was still an alpha release and not a product.
HILO-2 was chosen with the hope that an easier transition could
be made when HITEST did become a product. Two other factors
influenced choosing HILO-2. These were: the price of HILO-2 was
approximately $100K less than that of AIDSSIM and AIDSTG
together, and support for the product was more established with
identified training courses. At Phase II Contract Award, the
upgraded version of HILO was available so HILO-3 was selected to
be integrated into the TISSS.

2.3 TISSS SOW Task (4.1.3) - Design TISSS Architecture

The preliminary set of TISSS-documents were created as part of
the system engineering activity necessary to complete this task.
The analysis of pertinent research and existing software packages
and test languages led to the early partitioning of the system
design into Computer Software Configuration Items (CSCIs).

The preliminary documents generated during the TISSS Phase I
design included the Operational Concepts Document, the
System/Segment Specification, a report on the hardware support
requirements, and the development of the preliminary Software
Requirements Specifications for each CSCI.

The program plan for the TISSS Phase II implementation was
prepared and submitted as part of the TISSS Phase II proposal.
All embedded commercial off the shelf software (COTS) items were
defined and bid into the TISSS Phase II Proposal. These included
the Oracle DBMS, the Genrad Hilo-3 Simulator, the Palette
graphics system, the DEC Terminal Data Management System (TDMS),
the DEC Common Data Dictionary (CDD), the DEC Ada Compilation
System (ACS), and the DEC Virtual Memory Operating System (VMS).

The VHSIC Hardware Description Language (VHDL) Support
Environment (GFP), was also planned to be embedded in the TISSS.
The VHDL Analyzer (Compiler) without the simulator was integrated
into the TISSS to support VHDL version 7.2 syntax and semantic
functions, as well as translation to fault simulators. The Navy
Hierarchical Integrated Test Simulator (HITS) was also provided
as GFP and was integrated into the TISSS to provide fault
simulation capability along with the commercial fault simulator,
HILO-3.
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The basic TISSS system was defined during this period as shown by
Figure 2.3. The initial thinking assumed that an intermediate
tester language might be universally translatable and portable to
a variety of Automatic Microcircuit Test Equipment (AMTE)
testers. A Test Description Language (TDL) was described which
emphasized the description of a test program in portable
statements that included AMTE actions and flow control.
Unfortunately, typical AMTE test procedures rely upon and are
closely coupled to the hardware architecture of the AMTE. It was
felt that the universal TDL had to reflect a standardized test
procedure from a microcircuit view and that detailed AMTE
procedural requirements should be reflected elsewhere. Instead,
a software requirements specification was created for each
standardized test procedure that was tester independent. Tester
dependency is reflected in the design of the test procedures.

TISSS
PREPROCESSOR

TDB TDO INSERTION
SOURCE TD DVEOPMENT.

_ FAULTII

PRODUCT AND TEST SPE~CIFICATION TBSIMULATION
SCHEMATIC AND LAYOUT
SIMULATION MODELS F
TEST VECTOR SETS T AUE

AUDITRESULTS

I UT TDB F PORM TP

OUTPUT SUBSYSTEM TISSS POSTPROCESSOR

FIGURE 2.3 TISSS FUNCTIONAL FLOW
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The proper atomicity of microcircuit test descriptions had to be
determined. It was quickly concluded that a test (according to a
MIL-STD-883 test method) within a MIL-M-38510 subgroup would be
the proper atomic element of a test description between a
microcircuit oriented test description and an AMTE oriented test
procedure. Therefore, the TISSS system engineering team settled
on a Test Description which ap:eared very close to a standardized
Table III of the MIL-M-38510 detail specification. This put the
burden of test description atomic element expansion to a detailed
test procedure described in the native ATE language into a TISSS
AMTE postprocessor.

TISSS postprocessors can utilize highly tuned AMTE specific
source code as input to the automatic test program generation
process. A second major benefit of the postprocessor is for the
long term logistics use of the TISSS Data Base (TDB). The TDB
contains information which is independent of the current
architecture of the existing AMTE industrial base. With DoD
weapon system life cycles, typically two to four times longer
than commercial AMTE life cycles, re-use of tester independent
test descriptions leads to cost savings and higher quality when
reprocurring microcircuit components.

The first TISSS postprocessor relied on a set of action
directives embedded in GenRad GR-18 AMTE source code which direct
macro expansion type actions by the postprocessor. The set of
tester specific code with directives became input to the GR-18
AMTE postprocessor. The postprocessoz symbolically processed the
Test Description Language (TDL) and pulled from a specific Test
Macro Library (TML) the procedure called out by the test
description and then expanded that test macro procedure per the
embedded directives. A patent application is expected to be
filed by the USAF (RADC) for this concept, as shown in Appendix
D. The end result is highly reliable, re-usable source code
atoms for each test type according to the MIL-STD-883 test
methods.

The next important area to define was the semantic requirements
for a universally transportable and translatable test vector set
based on deterministic input stimulus to a microcircuit and
expected output response from a microcircuit. This format had to
be translatable to simulators and AMTE, in keeping with the goal
of having simulatable buses and test vectors within the TISSS.

It was decided that the use of a VHDL language basis for
representation of these test vector sets would allow eventual
expansion of the TISSS test vector set interface standards into
the design world. This is very iiaportant because the complexity
of these test vector sets demand a better human interface than a
large file of hundreds of megabytes of ones, zeros and
nanoseconds.

The TISSS data base presented a great challenge to the
development of the TISSS. The experiences of other projects were
evaluated in the use of relational database systems t. support
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electronic CAE, CAD and CAT data. These experiences strongly
suggested that a detailed information management approach based
on existing database technology would lead to failure of the
TISSS program. Instead, new ground was charted with.the
development of the concept of a hybrid database using the
important capabilities of the DBMS technology for metadata
management, and existing hierarchical file systems to store
language based representations of the CAE, CAD and CAT data. The
metadata includes information about the electronic CAE and CAD
data, but not the CAE, CAD and CAT data itself.

The TISSS metadata requirements were defined through an
information model. The CAE, CAD and CAT data items went through
formal syntax definition. The information model and the formal
syntax and semantics definitions for each data structure provided
a top to bottom definition of the information to be managed in
the TISSS, and allowed each TISSS function the ability to access,
read and modify the well defined database.

The creation of this hybrid, yet uniform, information model of
the electronic CAE, CAD, and CAT data allowed long term re-use of
this information, and extension of the TISSS. Further, a common
set of parsing and analysis tools was defined for each language
based descriptive item. These tools were then re-used for each
interface to these descriptive items.

In every case, each syntax and semantics processing tool prepared
an internal binary data structure which could be traversed
directly. In addition, a large set of common object oriented
procedural interfaces were defined. These interfaces allowed
data requests which were independent of how the binary
representation was stored. For example, get next node
declarations from a netlisted VHDL structural model would be an
object oriented procedural request of the VHDL model interface
tools.

Each new TISSS tool will re-use these information model
interfaces developed for the first TISSS release. Unfortunately,
not all interface needs could be kept object oriented. So for
example, when the TISSS is upgraded to IEEE 1076 VHDL, some small
impact will be felt outside of the parsing and analyzing shared
toolboxes. However, these impacts should be minimal.

A uniform user interface to all TISSS functions was defined very
early in the TISSS system design. This user interface used
mostly the same syntax and semantics from a user perspective.
Most of the menu based interface works on models of real world
objects. Functions performed map well to user oriented actions
which might be performed in a CAE, CAD, or CAT environment in
many smaller steps. However, the functions might be poor to use
for iterative design. These functions assume the user has a
verified design. These functions will catch data deliverable
problems when the contractor has translated to these TISSS
standard usage practices for VHDL or any other TISSS data base
component.
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2.4 TISSS SOW Task (4.1.4) - Yvaluate Hardware And Software

Along with a variety of vendor software packages, two languages
were evaluated for use in TISSS. The first of these was ATLAS,
the Abbreviated Test Language for Avionic Systems. "Avionics"
has been substituted with "All" in recognition of the wider
application of the language. ATLAS is a language in which the
unit under test (UUT) Fignal description is stated but not the
instrument control needed to produce the signal. The concept
behind ATLAS was appropriate for the test specification language
required in TISSS. However, it was desirable for the TISSS test
language to be in Ada syntax. This implied that a language
parser could be developed that would be easier to implement and
maintain. ATLAS had inherent complex syntactic and semantic
rules as well as intricate intra/interstatement relationships.
This complexity leads to error-prone coding processes and
difficult language parser implementation. In addition, since the
ATLAS language is primarily useful for analog rather than digital
testing, it became apparent from the analysis that a standardized
methodology to represent digital test vectors was needed.

Ada is the language of the future. The government required Ada
for development of new software programs. Digital Equipment
Corporation provided adequate Ada compilers. Harris had been
using Ada PDL for years on software projects throughout the
corporation. Review of existing tools and procedures lead to the
acceptance of Ada as a workable language for TISSS.

2.5 TISSS SOW Task (4.1.5) - Evaluate Acceptability

User design data security was recognized early on as a prime
requirement of the TISSS if the system was to receive broad user
acceptance. An idea that came out of the Phase I study was to
isolate the TISSS system computer in a secure area to protect
user design information, but this concept seemed too cumbersome
and expensive to be a practical solution. Manufacturers were
surveyed to determine their willingness to provide proprietary
data to the government for inclusion in the TISSS database. The
responses indicated that an automated protection mechanism within
the TISSS database would be required to prevent the accidental
release of proprietary information.

The mechanism provided is the specification of TIF versus TOF
outputs. A TIF (TISSS Input Format) contains all information
known about a device, including proprietary information. A TOF
(TISSS Output Format) contains only that data needed to generate
a Detail Specification or an AMTE test program, none of which is
proprietary. Further, the TISSS provides a security mechanism
that authorizes a user the capability to generate a TIF
separately from the capability to generate a TOF. Therefore, TOF
generation, which is a common function, can be performed by
clerks, while TIF generation, which is less common and requires
more care, can be restricted to system managers.

The current security mechanisms within TISSS prevent only
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accidental release of sensitive information. Two formal industry
reviews were held to present TISSS to potential users for
comment. At that time, industry representatives indicated
additional resistance to releasing proprietary layout and
schematic information to the Government. The concern was
expressed that the information could be intentionally released to
competitors, either legally or illegally, against the wishes of
the original manufacturer. The Government's concern is that many
systems must be supported for 20 years or more, while the devices
used in the system may become obsolete and discontinued after
only five years. Therefore, the Government requires enough
information to allow the remanufacture of any device used within
a system.

A consideration of these two positions prompted two suggestions.
The first was that proprietary information desired by the
Government be held in escrow, possibly at a location controlled
by the manufacturer. The Government would verify the correctness
and completeness of the information before accepting the data
into the escrow account. Thereafter, the Government would have
no access to the information without the knowledge and approval
of the manufacturer, except under such conditions as specified in
the escrow agreement. In general, the information would be
released to the Government only if the device in question had
been discontinued by the manufacturer but was still required for
a government system.

The second suggestion was that layout information, whitea carries
with it sensitive information about fabrication capability, is
not really needed by the Government. The only reason to store
layout data would be to remanufacture the device if it was ever
discontinued by the original manufacturer. However, layout data
typically strongly depends on a particular fabrication process,
and the likelihood of an identical process being available
several years later is small. Furthermore, most manufacturers
have tools that will automatically produce a layout from
schematics or gate level structural models. Therefore, there may
be no need to store the layout information, and hence no need for
the manufacturer to release the data.

There is one important use of layout data, however. rha- ,- Zii
verification tnat the device actually manufactured conf,.- to
the schematics and models released to the Government. This
verification step can be performed by a government auditor, who
typically has already signed a nondisclosure agreement with the
manufacturer as part of the acceptance of , device specification.

2.6 TISSS SOW Task (4.1.6) - Perform A Phase I Preliminary
Design

A preliminary design of the TISSS system was performed after the
system requirements were defined through the Operational Concepts
and the draf t System Specification. (see SOW TASK 4.1.3)



2.7 TISSS SOW Task (4.1.7) - Conduct A Tecnnical Presentation

Tne findings of the TISSS Phase I concept eADloration were
presented to RADC and Industry representatives on 27 February
1985 at Rome, New York. in this review, the TISSS Information
Model and Architecture was reviewed in detail and a description
given of how each Computer Software Configuratio, item (CSCI) fit
into the TISSS System Architecture, shown by Fi 2.7. The
Modeling CSCI review included a description cf t arious
behavioral and structural simulators plannei . .- ystem.
Ctandardization issues were discussed where p. ' -, VHDL and
EDIF standards would be utilized by the TISSS t, ".uild on work
already under way. Finally, the features of the TISSS itself
were discussed from a users perspective and the ...ntial cost

and schedule benefits one could realize from the -e oi the
system.

INTERFACE

TCL

AUDIT DESIGN INPUT MODELING OUTPUT POSTPR%'SOR

ADMINISTRATION

FIGURE 2.7 TISSS SYSTEM ARCHITECTURE



2.8 TISSS SOW Task (4.1.8) - Prepare A Technical And Cost
Proposal

Detailed technical and cost proposals were prepared. The
technical proposal emphasized the approach to each SOW task for
Phase iI and the risks that remained. The largest risk at the
end of the Phase I effort was the availability of a stable GFP
VHDL support environment. This p-oblem was worked around in the
proposal and tr, Phase II program.

2.9 TISSS SOW Task (4.2.1) - Perform A Phase iI Preliminary
Design

Upon contract award and h -:ore Preliminary Design could begin, it
was necessary to rewrite znd finalize the preliminary Software
Requirements Specifications (SRSs) that had been developed durin
Phase I of tie contract. This was due to further clarification
6nd understanding of customer needs during the time period
between the end of Phase I and the Phase II contract award,
urther developments in COTS software, transition from the Phase

i to Phase II development team, and the use of requirements
language and scoping terminology necessary for completion within
a fixed price environment. Sufficient time was not budgeted for
this effort which led to difficulty and additional cost in later
phases.

One difficulty at this time was in performing requirements
traceability from the System/Segment Specification (S/SS) and
preliminary SRSs to the new SRSs. Many of the requirements in
the original documents were implied in the .pporting text but
not enumerated and thus, not easily identif'ed for tracing. A
noLe for future specifications is to ensure that all actual
_ quirements are put into lists which can be tracked and
monitored. Tools should be used for requirements tracing. It
was attempted unsuccessfully on TISSS to develop an internal tool
for this purpose. An internal System Specification Review (SSR)
was held at the end of Nvember, 1985. a critical internal design
review that the governme L should have been invited to. The
schedule may hav- been s *yhtly delayed but change decisions
could have been made early at the most cost-effective time.

The TISSS Preliminary Design for Build 1 (tc !iSSS System less
the Modeling Interface (MI) CSCI was performed from early
December 1985 through March of 1986. The requirements for three
CSCIs (Postprocessor, Output and Modeling Subsystem) were
somewhat vague at this point, causing confusion later on. There
was some difficulty in learning hiw to use the Software
Development Standard (DOD-STD-SDS) with Ada. SDS maae use of
older, traditional software methodologies and languages which did
not easily lend themiselves to modern software engineering
practi,.es ann . A features. An internal Software Standards and
Procedures Manual (SSPM) was developed and variations to the Data
it em Descriptions (DIDs) were internally agreed upon, It would
have been better to have delivered revisions to the SSPM and
Software Development Plan (SDP) that were produced during Phase I
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at PDR, CDR and TRR. The SSPM is a guidebook for software
developers and was updated, reviewed and clarified as necessary
throughout the development process.

Software preliminary design was performed by using Yourdon
functional decomposition techniques, as shown by Figure 2.9-1, to
define the Top Level CSCs. A chart describing the symbol
conventions is shown in Figure 2.9-2. For a complete
description, refer to the TISSS Software Standards and Procedures
Manual (SSPM). Ada Program Design Language (PDL) was used to
define and document the interfaces between CSCIs and the compiler
was used to check the consistency of these interfaces. Object
oriented design was not used at this stage except at the gross
level to break out the features like the TDL tool box to access
the objects, that is, Test Macro Skeletons, Test Plan
Requirement, Test Plan Build, Pin Definitions and Detail
Specification Build files.
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TISSS CHART CONVENTIONS
(FROM SSPM)

Alpha Software Module Logical Grouping of
Software Modules

Bet Common Software Module [ i Continuation to another

[jjjj (Re-used in another place) [ j page

H1i Software Module defined
Gamma Host System Serice Zeta elsewhere

STUFF Data Couple DosTUFF Control Couple

FIGURE 2.9-2 TISSS YOURDON SYMBOL CONVENTIONS

Prototyping was performed at this time in the following critical
areas: user interface features and the use of the DEC COTS
Terminal Data Management System (TDMS), Structured Query Language
(SQL) interface to Oracle commercial data base, Ada tasking and
the use of VAX communication services to prototype multiple users
interfacing to a single database and recursive descent language
parsing to verify the TDL grammar and approach for the TDL tool
box. It was very advantageous at this time, to have the VAX 8600
target machine on-line and available to the TISSS software
development team. It not only enabled the prototyping which was
critical to the design process but allowed the compiler to be
used to process Ada PDL; it allowed programmers to become
familiar with the tools and environment; and it allowed
confi,,ration management of all documentation to be performed
throughout the development process.

A difficulty that quickly became apparent was the CSCI levels
that had been determined during Phase I and the required
visibility to these CSCIs. First, there were too many CSCIs
according to MIL-STD-483A criteria that should have been used for
their establishment (see Appendix C for discussion of this
issue). Because of these management boundaries and LOC
estimates, the development of an optimal software solution with
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common code was difficult. With the combination of more
widespread use of object-oriented design and fewer CSCIs, more
reusable packages would have emerged and less overall code would
have had to be developed for TISSS.

Similar activities had to occur on Build 2 (the TISSS System
including Modeling Interface (MI) CSCI of the TISSS contract.
From late March 1987 to early May 1987, the MI SRS had to be
rewritten by ECP direction. *This time, a much better job was
done in using requirements versus design terminology in creating
precise, understandable, and testable requirements. All data
formats expected and examples were given in the appendices. The
time allotted for all of Build 2 was very short, the startup
phase was particularly difficult because several activities from
Build 1 were still in progress. An internal SSR was held prior
to the official meeting. Again a few key government
representatives should have been invited to attend for better
understanding and to clarify direction before the design task was
begun.

Preliminary design for Build 2 lasted from early May to the end
of June 1987. This time, object-oriented design techniques were
used which caused a more efficient overall design and created
8000 LOC of common code. The design team worked as a whole and
assignments to TLCSCs were not made until later which allowed a
broader understanding by team members and less duplication of
effort. A new SSPM was developed at the start of Build 2 to
incorporate lessons learned from Build 1. For example, a much
more coherent mapping of Ada to MIL-STD-2167 was accomplished and
stricter file naming standards were enforced. A tool was
developed internally to produce the STLDD and SDDD documents from
Ada PDL or code which was a great boost to productivity and
morale. Prototyping again was a critical factor as all
interfaces to COTS software were prototyped : interfaces to the
HITS and HILO simulator, especially in determining how errors
were reported to the user and how the software should process
them and also prototyped was the interface to Intermetrics
Intermediate VHDL Annotated Notation (IVAN) routines.

2.10 TISSS SOW Task (4.2.2) - Conduct A Detailed Design

Detailed design for TISSS Build 1 began immediately after PDR in
March 1986 and continued until September 1986. The approach
taken was to divide the design time into two stages and have an
internal design review after the completion of the first stage.
During the first stage, the top-level CSCs that were defined
during Pre iminary Design were further elaborated into lower
level CSCs and units until all units were identified. Yourdon
diagrams were used to illustrate this decomposition. Ada PDL was
used to create a draft for the specifications of each lower level
CSC and unit. The TISSS errors package was completed as far as
knowledge allowed. At this point the design was reviewed
internally by the chief programmer and cost account leaders.
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In the second stage of Detailed Design, the PDL bodies were
written for each unit using Ada PDL. They were compiled for
correctness as time permitted. The level of PDL var:ed from CSCI
to CSCI depending upon the understanding of the requirements and
the time available. For example, in the Postprocessor CSCI,
establishing requirements continued well into the design stage,
the ratio of lines of PDL/lines of code was 50:1 in some areas.
For other CSCIs, the ratio was as low as 2:1. As each TLCSC's
PDL was completed, internal design reviews were scheduled with
system engineering (SE), SQA, chief programmer (CP) and the cost
account leader. Because of the large number of designers and
TLCSCs - SE, SQA, and CP (which were each one person) could not
attend all reviews or would have inadequate time to review the
PDL. As the design evolved, the SRSs as written were not clear
or accurate or some interpretation of the requirements was needed
to fit the available resources. Although there were usually
discussions and informal memos pertaining to requirements
interpretation, these discussions should have been documented to
reduce risk and to aid new people that came on the program. As a
result, there are holes in the overall TISSS system requirements.
SRSs should have been PTR'd, updated and maintained as the
program went along. Again the system engineering staff was
insufficient to support all of these desired tasks.

Prototyping continued to be important during Detailed Design.
One large effort was to prototype the Design Input subsystem for
feasibility. This allowed verification of concepts of
interactively processing TDL, development of the Design Input
menus, usage of advanced features of TDMS, and development of the
overall Design Input architecture and common utility packages.
The demo model of Design Input was shown to the customer for
critical feedback and demonstrated at national conferences to
illustrate TISSS features.

Some of the difficulties in developing the detailed design of
TISSS centered around the documentation. One issue was how to
incorporate the PDL into the SDDD. Since it was desirable to use
the compiler to verify the PDL, the method chosen was to include
the PDL files directly into the document and have the various
sections of the document reference these PDL "listings". This
eliminated some duplication of information in listing inputs,
outputs and processing. One section that was written in the SDDD
for each unit was a high level description of the function of the
routine. This required that the designer update two files - the
SDDD file and the PDL file - as changes were made to tLe design
making it time consuming to keep them consistent. Also as PDL
later evolved into code, these descriptions were included in the
code header.

Another concern with the design documentation was the creation
and upkeep of the Yourdon structure diagrams. For a person
trying to learn or review the design of a CSCI, the Yourdon
diagrams give a pictoral representation that is useful. The
Yourdons were used in all of our internal and customer reviews.
The tooling for the Yourdons was quite inadequate. The Yourdon
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diagrams are drawn on a Macintosh with no tool used for checking
consistency between drawings or levels. Several conventions were
adopted in the internal SSPM to show such features as commonly
used modules, modules that were expanded or continued on another
page, and interfaces to operating system features. Since these
conventions were developed in parallel with the design effort,
there were some changes as various uses arose and some time was
expended in rework. Also because of evolving standards, the
resulting diagrams do not appear consistent between CSCIs. Since
these diagrams were developed on a separate machine from the
documentation text, no facility was available to merge the text
and graphics. Each time the TISSS design documents were
published, clerical help was used to cut and paste the figures
onto the appropriate pages.

The Interface Design Document (IDD) was drafted during the first
stage and completed during the second stage. The IDD shows all
procedure calls across CSCI boundaries. The Data Base Design
Document (DBDD) was also completed during the Detailed Design
phase. Also, operating scenarios were developed for the
Administration CSCI (AD) to give expected results when operating
other CSCI's. Because AD provides data base access services to
the other CSCIs, these scenarios provided information of the
resulting actions that each data base access routine would
effect. The scenarios are included in the AD SDDD, Section 6.2
(Notes).

The Detailed Design phase of TISSS Build 2 was short, lasting
from July through September 1987. Again a two stage approach was
used with an internal review occurring after the first stage.
The first stage emphasis was elaboration of the design to the
unit level where specifications and descriptions of each unit
were developed. Yourdon diagrams illustrating the design to the
unit level were completed. During the second stage the PDL
bodies for each unit were developed. The goal of Build 2 was to
write the PDL to as detailed a level as possible by CDR, in order
to meet the short schedule for code, unit test and integration.
The approach proved quite effective and design changes caused no
major impact.

Most of the difficulties with design documentation that occurred
in Build 1 were addressed and resolved in Build 2. The Design
Document Generator (DDG) tool developed internally, generated the
zunoff file for the SDDD directly from the PDL or code files
along with a template file and configuration file as inputs.
This enabled the designers to perform all their work within one
file, the ada fic which was used first as a PDL file and then
as a code file. Functional descriptions of the unit was placed
in the code headers. The DDG tool placed the descriptions,
inputs, output, processing, etc. into the appropriate sections
of the document so no references to listings were required. Also
the DDG calculated which units used other units and which data
items were global and where they were used. During Build 1 this
information for the SDDD was computed by hand which could lead to
incompleteness and distrust for the accuracy of the data.
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For Yourdon diagrams in Build 2, templates were drawn for each
possible configuration between 1 and 7 boxes on a page. If more
boxes were required, a drawing would be split into two pages.
This enabled consistent drawings between various designers and
eased the graphic creation process. The confusing convention of
the '*' was dropped during Build 2. The problem of
unavailability of a text/graphics merge tool still existed and
the drawings were still pasted in by clerical help. A tool was
developed at the completion of Build 2 to derive the Yourdon
diagrams from the code through the DDG using the laser printer.
This makes it easy to update the Yourdons with changes to the
as-built implementation. This tool should be tested for usage
during the TISSS Insertion and Maintenance Phases.

2.11 TISSS SOW Task (4.2.3) - Code And Test Each Software Unit

DOD-STD-SDS requires that Software Development Files (SDF) be
maintained for each unit of a system. All SDFs must conform to
established and consistent format. Each SDF file contains a copy
of the code, unit test procedures and test results. A system
with over 100,000 lines of code, such as TISSS, will consist of
over 1000 units developed and tested. TISSS maintained all SDFs
electronically to minimize the problem of storing the SDFs and to
provide more thorough configuration and control.

The test procedures, tejt data and test results were stored as
separate files. This prompted the creation of a tool to retrieve
the electronically maintained SDF parts and combine them into the
desired SDF format. The created SDF could then be printed or
left in a specified on--line directory.

2.12 TISSS SOW Task (4.2.4) - Integrate And Test Software

DOD-STD-SDS specifies the use of top down testing. Some of TISSS
was tested top down but in most cases bottom up testing was
performed. Bottom up testing was required for CSCIs having
complex data requirements at the top level and was best supported
by testing lower level units first. Bottom up testing was also
used when an LLCSC or a unit was required by many other L.CSCs
and units.

Every unit in TISSS was tested dsing unit test procedures and
reported using unit test reports as roquired by DOD-STD-SDS.
Each developer was required to create a draft test procedure for
each unit during the detailed design phase. Unit testing on
TISSS provided failure detection and design correctness rather
than requirements satisfaction. Requirements were tested during
informal CSC and CSCI testing and ugain by the independent TISSS
test team during formal CSCI testing
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2.13 TISSS SOW Task (4.2.5). - Verify TISSS Operation

The technical work accomplished to verift, TISSS operation
consisted primarily of the TISSS Softwa Functions
(Demonstration Scripts) which are inclue a in the Software User's
Manual (SUM), Volume 2, Appendix VI.2. In addition, activities
during closure of the Build 1 phase of TISSS included tracking of
interfaces to be tested. This activity was started by the
Software Development organization and completed by the Formal
Test organization.

The development of the demonstration scripts would have
progressed more easily if their development had occurred after
the revisions to the menu sections of the SUM instead of
concurrently.

The focus of formal testing for TISSS should have been at the
system level and not the CSCI level. This is an especially valid
comment since TISSS CSCIs were usually not stand-alone processes.
The TISSS demonstrations were focused on success, so recovery
limitations *,ere rt necessarily or deliberately addressed beyond
the CSCI level. The method used for demonstration script
development largely ignored testing the interfaces between each
of the CSCIs. However, this was recognized early in the script
development and random testing of error conditions occurred
whenever time allowed.

The design criteria that was established focused on demonstration
of each menu functionality based on a success criteria.
Development of demonstration scripts was crucial to determining
TISSS capabilities as opposed to specific CSCI capabilities.

The formal CSCI tests followed the Software Test Plan. The
scripts were written to serve as a TISSS tutorial as well as for
System Validation. They did not map to the Contract Data
Requirements List (CDRL). Twenty-Six (26) demonstration scripts
were developed alon, with associated command procedures, ad hoc
queries (*.SQL) and reports.

2.14 TISSS SOW Task (4.2.6) - Configuration Management Program

A configuration management (CM) program was developed to control
the configuration baseline of the TISSS as described in the
Software Configuration Management Plan. The plan identifies at a
high-level the various procedures that were used to ensure proper
administration of the Configuration Management tasks, namely,
configuration identification, change control, status accounting,
program trouble reporting, responsibilities of the Change Control
Board (CCB) and auditing. For the actual operating procedures,
methods and tools for TISSS CM, a much more detailed, streamlined
and automated approach was necessary.

The CM library system evolved with the project and with the tasks
necessary for each phase. The backbone of the CM library system
is based upon the DEC VAX tool, Code Management System (CMS).
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CMS is a library system for software development and maintenance.
CMS stores source files in a library, keeps track of changes made
to the files and records user access to the files. Initially
TISSS CM started with one CMS library for storing the
requirements documents at the completion of the requirements
definition phase. Eventually the CM library system evolved into
a hierarchy of directories and CMS libraries where each CSCI had
separate CMS libraries for source, stubware, test, formal test
set up, and SDDD documentation. The entire CM account currently
maintains 70 CMS libraries. The CMS tool provides a good method
of tracking different versions of files and the comment history
facility allows changes to reference the appropriate Program
Trouble Report (PTR) and Internal Software Delivery Form (ISDF)
that caused a change. Using CMS simplified the tasks of keeping
different baseline libraries as described in the SWCM Plan since
all old veLsions were always accessible. CMS also provided
features to manipulate combinations of files within a library
with groups and classes. These will be used as TISSS i6 inserted
into multiple sites and more than one version must be maintained.

In addition to the CMS libraries, another DEC VAX tool that was
used quite heavily was the Ada Compilation System (ACS) product.
ACS is the Ada program library management utility for VAX Ada.
It provides an interface to the VAX Ada compiler and VAX/VMS
Linker. VAX Ada programs are compiled and linked in the context
of an Ada program library. Sublibraries are the primary
mechanism for controlled sharing and concurrent program
development in a multiperson project. The source code for TISSS
was managed through a three-level ACS sublibrary system by CM.
As developers made changes to the baseline TISSS, sublibraries of
the CM libraries were created which inherited the context of the
parent library and enabled quick testing.

Changes to the TISSS baseline documents and code were controlled
by the CCB through approval of PTRs and ISDFs. Changes were only
incorporated into the CM library with CCB approval. CCB meetings
were held almost weekly throughout the duration of the program
and the signature authority included the CCB chairman, Software
System Engineering, Software Program Manager, Chief Programmer,
Software Test and Integration, Software Quality Assurance and
Software Configuration Management. There were a total of 944
PTRs and 1159 ISDFs written on the TISSS program and there were
108 CCB meetings conducted. The PTR and ISDF forms contain the
basic information discussed in the SWCM plan. The forms were
revised at least twice in the duration of the TISSS project to be
tailored with more project specific and useful information.
Initially the forms were printed on paper and filled in by hand.
The latest version of the forms are kept electronically and
edited by the person submitting the form. Hardcopies are
retained by the CM clerk.

As the number of documents, files and libraries grew, it became
necessary to develop automated command procedures for CM
operations involved with creating and replacing versions in the
CMS libraries and building, recompiling, and relinking the source
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executables from ACS. At least 90 DEC Command Language (DCL)
command files were written for these and other purposes. The
command files provided a log of CM actions which were attached to
the ISDFs and reviewed by the CCB. They were important for CM
productivity, throughput and repeatability.

The Configuration Management personnel were organized to report
to the Software System Engineer. The CM task was budgeted to
support one CM clerk full time. It was found that this level
alone was insufficient for a large Ada project. Engineering
expertise was required in order to establish the CM library
structure, establish the ACS library structure and coordinate the
initial compile and link command procedures as well as develop
other command procedures to automate the CM tasks. Many of the
compilation changes and rebuilding of the CM ACS libraries were
so lengthy that they were best performed at night. This approach
freed up system resources during the day and prevented engineers
from working with changing or obsolete libraries. The CM
engineer should be one who is able to work late hours or who has
access to a terminal from home because often these command
procedures would need to be checked, corrected, and restarted at
night to assure successful completion.

Difficulties in the CM area seemed to be related to lack of
knowledge by the TISSS developers in CM procedure and proper
completion of PTRs and ISDFs. A more comprehensively written CM
plan would have aided in this understanding. Again this plan
should have been updated as the procedures evolved. Insufficient
information was provided on a PTR or ISDF form in some cases for
a complete description of the problem or solution. Sometimes
only portions of PTRs were closed with an ISDF. This made it
very difficult in tracing PTRs to ISDFs and for cross referencing
in the CM filing system. A better method would be to close the
PTR and write a new one with a similar but reduced scope. One
ISDF was sometimes used to deliver several files and close
several PTRs. While this is a fast method of closing PTRs, it
became difficult later on to trace the effects of individual
PTRs. The number of PTRs closed with a single ISDF should be
kept to a small number. The entire CM PTR and ISDF system
require automation as much as possible with a data base centered
,ool to make CCB agendas, PTR and ISDF status reports, and PTR
and ISDF creation fast and efficient.

2.15 TISSS SOW Task (4.2.7) - Software Quality Assurance Program

A quality program was developed to monitor the design, coding,
test and integration of the TISSS as described in the Software
Quality Assurance Plan. This plan was prepared to closely follow
the standard Harris Quality Assurance processes and procedures
approved for software development. Key features of the plan were
to assure that the development team adhered to the Software
Standards and Procedures Manual (SSPM); to assure that the test
process guaranteed that all software requirements were met by
each Computer Software Configuration Item (CSCI); and to assure
that all contract deliverables met the specific Data Item
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Description (DID) format and content requirements for each
Contract Data Requirements List (CDRL) item.

The organizational structure implemented to assure that the TISSS
development met the requirements of the functional and allocated
baseline was to have a full time quality engineer assigned to the
program, reporting to the Program Manager. In this way, any
conflicts between the development organization and the baseline
could be quickly resolved and any deficiency remedied. This
concept of co-location of the developmental engineers and the
quality engineer added a measure of efficiency because it allowed
a timely review of the design documentation since the quality
engineer was intimately involved with the development process.

The procedures followed by the quality organization as defined by
the Software Quality Plan were to review and approve the Top
Level Design and Detailed Design Documents for adherence to the
Software Requirements Baseline as well as to monitor and approve
the formal testing of each CSCI during the Functional
Configuration Audit (FCA). The quality engineer sat on the
Change Control Board and had approval authority for implementing
any changes to the system and the documentation describing the
system. For externally developed software products, the quality
engineer aud4ted the design documentation and the formal testing
of the integLJted products.

Throughout the TISSS development cycle, quality engineer staffing
fluctuated considerably. Also during stages such as Functional
Configuration Auait, at least four additional quality engineers
were required to complete formal CSCI tests due to the number of
CSCIs and lines of code within the TISSS program. These
additional quality engineers allowed formal testing to complete
within a reasonable although long period of time, but
necessitated some unexpected changes since the documentation was
interpreted differently at this final testing stage. While
keeping overall costs lower with minimal staffing, formal testing
could have been completed socner if the additional quality
engineers had been more familiaL with the test procedures.

2.16 TISSS SOW Task (4.2.8) - Implement Planning And Control
Procedures

Planning and Control procedures establishei for the software
development were a periodic Line of Code assessment during the
development cycle, monthly status and cost reporting, and control
of the Program Plan or as referred to elsewhere, the Software
Development Plan. Also, software testing control procedures and
the use of a Program Support Library was established.

During each of the major software development activities in the
Computer Software Development Cycle as shown by Figuce 2.16-1, a
projected Line of Code (LOC) estimate was established. The
estimate after Phase I of the program was 58,855 LOC. A decision
was made early on to use a comparison of the actual LOC to the
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estimated LOC as a cost metric in this Design to Cost approach to
software development. An internal Harris tool based on the Boehm
methodology was used to count the LOC at each major activity as
shown in Figure 2.16-2. Performance estimates were made and
published in the design documentation as well as presented during
the critical milestone reviews. The final LOC growth to 112,918
was partially based on a replan of the program caused by the
delayed delivery of the VHSIC Hardware Description Language
(VHDL) software. This eight week delay in the program resulted
in a two build approach - Build 1 bringing everything except the
modeling subsystem through to the integration and test phase, and
Build 2, adding the replanned modeling subsystem and some
critical enhancements.

Cost and schedule control was implemented by using the Harris
Project Control System (PCS). The PCS system developed by Harris
complies with the requirements of DoD 7002.2 and the C/SCSC Joint
Implementation Guide, and provides information for preparation of
the Cost Performance Report (CPR), Cost/Schedule Status Report
(C/SSR), and the contract funds Status Report (CFSR). A top-down
overview of the major management system elements which when
integrated with PCS, provides a valid and logical sequence for
organizing, planning and budgeting, accounting, analysis, and the
timely incorporation of contract revisions, shown in Figure
2.16-3. This section describes and defines this generic
management system utilized for program cost and schedule
performance measurement.

PCS requires separation of the contract Statement of Work (SOW)
tasks to a manageable and meaningful level. The development of a
Work Breakdown Structure (WBS) is facilitated by selecting and
assigning tasks for each element of the WBS to performing
personnel. The integration of program tasks within the Harris
functional organization results in the matrix relationship called
the Responsibility Assignment Matrix as shown by Figure 2.16-4.
At the intersection of the responsible organization and the WBS,
a management level is defined for accomplishing all aspects of
program work. It is at this intersection that the Cost Account
is defined. The Cost Account represents the total effort managed
by the cost Account Leader (CAL). The WBS is expanded to cover
all task areas defined by the SOW and assignments made to the
responsible program team member.
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The Program Managr-ment Office defined the TISSS technical scope
of work and developed a Program Master Schedule, a WBS Dictionary
for each WP.S element, and a Contract Data Requirements List
(CDRL) schedule. T'hese data along with the WBS define the
program parameters and allowed the program baseline to be
established. The Program Master Schedule, shown in Figure 3.0,
is the initial step in baseline planning and it identifies the
tasks to be performed, the sequence in which these tasks are to
be accomplished, and the activity inter-relationships. Next, the
WBS is developed where task elements were identified and assigned
to the Cost Account Leaders who in turn established baseline
budgets to perform the work. The WBS Dictionary provided a
general and technical description of each task element in the WBS
as it related to contractual work, which enabled the CAL to
accurately budget the assigned work. The cost accounting system
gathered actual costs by WBS element and reported them twice each
month. The CDRL schedule was the data output required by the
contract and was merely a listing of the data requirement
schedule.

RESPCNS;lUTrY A G MTPN" MATRIX (RAM)

--------------------- CONTRACTWORKBREAKDOVN SR7MUCIT E

WBS LEVEL I
LEVEL NAME

I I PROGRAM
PRIME

ORGANIZATION BREAKDOWN ISSION
STRUCTURE 2 EOUIPMEN

- - 3 EC'.JIPMENT

COST ACCOUNT
LEADER 4 TASK

FUNCTIONAL PROGRAM A
MANAGER LEVEL

DEFT DIRECTOR A- - - -

MAJOR DEPARTMENT -

VE PRESIDENT --- -II _ _!

6 ACCOUNTS I
ORGANIZATIONAL-STRUCTURE 1-9 -

ACCOUNT DENOTESIHOST SECTIONA WORK FOR LEVEL 4 TASK

I I 7 PACKAGE

FIGURE 2.16-4 RESPONSIBILITY ASSIGNABILITY MATRIX
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The Cost and Schedule Status Report (CSSR) system was used to*
monitor on a monthly basis, the Budgeted Cost of Work Scheduled
(BCWS), the Budgeted Cost of Work Performed (BCWP) and the Actual
Cost of Work Performed (ACWP) at the appropriate Work Breakdown
Structure (WBS) level. These parameters were reported and any
variance to plan above the allowed percentage explained. This
status and cost reporting procedure gave not only the needed
visibility to the customer into the program, but also, the
program team was provided with trend data as well.

Program methodology for controlling policies and development
procedures were documented in the Program Plan, the Configuration
Management Plan, the Software Quality Plan and the Software
Standards and Procedures Manual (SSPM). These documents
specified the internal control procedures for the program and as
directed by the contract, were under customer change control
except for the SSPM which was delivered under Phase I and not a
controlling document for Phase II. In addition, after government
approval was granted for the Software Test Plan (STP), the
Software Test Description (STD) and the Software Test Procedures
(STPR), these documents were also placed under customer change
control.

The program also went through the evolutionary development of a
support library, where information from various sources was used
to support the implementation of design features within the
TISSS. Data such as the Computer-aided Acquisition and Logistics
Support (CALS) standards and the MASA Support Requirements
Document were invaluable in performing the ECLIPSE phase of the
TISSS contract.

A dialog concerning TISSS field deployment has been conducted in
the SUM with particular emphasis on minimum hardware and software
requirements including power, layout, and environmental factors.
User training and the change implementation process subsequent to
deployment has also been covered. With the exception of the
change implementation process after deployment, these topics are
fully described in the TISSS Software User's Manual, the key
reference material for a thorough understanding of the system.

2.17 TISSS SOW Task (4.2.9) - Coordinate TISSS With IDAS/VHDL
Efforts

VHDL was successfully integrated into the TISSS. It is the
interface specification for submitting behavioral and structural
model descriptions. The VHDL environment, shown by Figure
2.17-1, consisting of the Analyzer and Design Library (DL)
Manager, has been integrated into TISSS and provides a syntax
verification. The output from the DL provides the intermediate
format required for model translation to TISSS embedded fault
simulators.

More explicitly, VHDL models were written for all TISSS packages,
primitives, and representative test-bench elements. These VHDL
test-bench components were tested for syntax by analyzing into
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the Design Library (DL). The VHDL Test Bench Architecture is
shown by Figure 2.17-2. Further testing was accomplished by
model generating, building, simulating, report generating, and
comparing the results against previous simulations.
Specifications for the appropriate VHDL syntax of behavioral

models, structural models, and test vectors were thoroughly
documented and incorporated into the Interface Requirements
Specification and Software User's Manual.

The Integrated Design Automation System (IDAS) effort begun with
an assembled team from Hughes, Harris, Intermetrics, and GTE.
Though the IDAS program was postponed/cancelled, it was apparent
to Harris that TISSS itself encompassed some of the features that
would be desirable for a VHSIC IDAS. The applicability of the
TISSS to the objectives of the IDAS program is a strong reason to
retain close ties between the two programs.

Harris has been actively involved in industry coordination
efforts of TISSS standards. Explicitly, attendance at VHDL
Analysis and Standardization Group (VASG) meetings, and active
pursuit of an IEEE standard for the TISSS Test Vector Language
(TVL).
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The TVL effort was originally subcontracted out from Harris to
Prospective Computer Analysts, Inc. (PCA). The goal was to
expose industry and government agencies to the TVL. Harris
provided a list of possible enhancements to be incorporated.
Unfortunately, the task was not monitore as closely as was
needed. TVL grew to such complexity that the original objective
and intent of the language was no longer visible. Originally,
TVL was to meet three top level goals. These goals were to: a)
be a subset of VHDL and conform fully to VHDL syntax and
semantics; b) precise enough to serve as a standard; and c) beeasily translatable to a variety of simulators and ATEs.

The major concern for the newly proposed TVL was a lack of
validation to determine if the language could meet the above
criteria. The TVL effort was brought back under the control of
Harris. The TVL currently incorporated into TISSS will form the
baseline for any enhancements to the language.

Recently, TVL has been presented from a requirements point of
view to the IEEE SCC-20 ATPG Subcommittee and to the IEEE DASS
Test Standards Subcommittee. Harris is the co-chairperson to the
DASS Test Standards Subcommittee.
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Under a future planned effort, the TVL enhancement task will
produce a completely defined syntax for a TVL that meets the
above stated criteria. Verification will be performed to insure
compliance. A working group called Waveform And Vector Exchange
Specification (WAVES) will provide the technical leadership for
the task. The objectives of this working group will be to bring
TVL before the IEEE DASS to receive feedback from Industry and
government, with the eventual goal of obtaining IEEE
standardization.

2.18 TISSS SOW Task (4.2.10) - Incorporate Fault Simulators Into
TISSS

The HITS and HILO-3 simulation environments were successfully
integrated into TISSS. The original intent was to incorporate
HITEST developed by GenRad. HITEST was the most desirable
simulation environment because of it's ability to support scan
designs. Unfortunately, HITEST did not become available to the
market in the required time frame. HILO-3, also developed by
GenRad, was chosen in the hope that a smoother upgrade could be
accomplished when HITEST did become a supported product.

HITS and HILO-3 both offer a true value simulation capability.
However, only interfaces to the fault simulation and fault
simulation report functions were incorporated.

The major interfaces required for the simulators are the VHDL
model, consisting of the Interface Declaration, an Architectural
Body, and the test vector set in TVL format. It was necessary to
develop software that translated VHDL and TVL to the native
simulator's model and vector language. A secondary interface is
the TDL Pin Definition File (PDF). The PDF contains vital
information on individual pins as well as pin groupings. Many of
the TISSS subsystems use either the Pin Definitions File or the
VHDL interface declaration that is consistent with the Pin
Definitions File. The translators within the TISSS Modeling
Interface Subsystem use the Pin Definitions File and the
consistent VHDL interface declaration to assure interoperability
within TISSS.

In order to provide a proper VHDL interface for the simulation
environment, many system engineering hours were required. A
subset of VHDL had to be defined that software could parse and
easily translate to either the HITS or HILO modeling language.
The scheme was to develop a basic set of TISSS structural
primitives. The interfaces of these primitiv.s would be
thoroughly defined, as well as the architectural bodies.
Structural VHDL models entered into TISSS could contain only
these primitives supported in the basic set.

The VHDL interface for the Device Under Test, DUT, also had to be
defined for behavioral and structural model descriptions. This
interface required analyzing, model generation, and simulation to
ensure these specifications would be simulatable if a VHDL
simulation environment was integrated into TISSS.
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The VHDL model is analyzed into the Design Library (DL). This
results in an intermediate form known as IVAN. Ada code was
written to interface with IVAN procedures that would extract data
required for translation to the proper fault simulator format.

TVL translation occurs from TVL source. However, a TVL toolbox
was developed for TISSS that parses the TVL source code and
formats it into an internal data structure. Many TISSS
subsystems work from this format. The TVL toolbox defines the
data format that is the interface for translating TVL to the
proper fault simulator format.

6imulation scripts containing actual HITS and HILO-3 commands are
incorporated into TISSS. These scripts reside in VMS files and
are executed to perform fault simulation and fault simulation
report generation. Once simulation is completed, interfaces to
the simulation reports are required. Stimulus and response
information is extracted in order to generate TVL. Required data
to fully populate TVL is not available from a simulation report.
The'refore, a TVL template is generated that can later be edited.
TISSS fault dictionaries are also generated from fault simulation
report.

The interfaces to the fault simulation reports gave developers
t!'e most dif':culty. There were no written specifications for
the ASCII text files. As versions of the simulators changed, so
did these simulation report formats. It was necessary to
"freeze" the HITS and HILO-3 versions so software could stay
constant. HILO-3 version is "i"; HITS is version 12. In the
future it would be beneficial to have access to some internal
format of the fault simulator that would be unaffected by version
upgrades.

2.19 TISSS SOW Task (4.2.11) - TISSS Interface Manual For Other
CAD And Other AMTE

The TISSS Interface Requirements Specification (IRS) and Software
Users Manual (SUM) fully document the language standards used by
TISSS. These languages are the input to and output from the
TISSS database. All CAD Postprocessors must generate these
languages and all AMTE Postprocessors must read these languages,
which represent the only interface between the TISSS and the
external world. Therefore, these documents provide all the
information required to develop new CAD and AMTE Postprocessors.

The file format to input information into the TISSS is called the
TISSS Input Format (TIF). TIF is comprised of the Test
Description Language (TDL), the Test Vector Language (TVL), and
the VHSIC Hardware Description Language (VHDL) as well as IGES
and EDIF graphics data. (VHDL is an industry standard. However,
TISSS places restrictions on its use for structural models, the
restrictions of which are documented in the IRS and SUM.)

TDL is designed to capture test related information about a

microcircuit in a form compatible with the MIL-M-38510 detail
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specification. The language is not tightly bound to the 38510
slash sheet, however, and this flexibility is a strong point,
allowing for future changes in the specification as well as
customized test approaches that deviate from the document. The
net effect is to reduce the risk to the program since the program
does not depend on a single interpretation of a MIL standard, it
reduces the risk of obsolescence, and increases the probability
of user acceptance. Therefore, the flexibility in the language,
although it might appear to increase cost because less
functionality can be "built-in", actually decreases cost, both
initially and ove-r the life-cycle of the system.

A strong attempt was made to make TDL "Ada-like". The sole value
of being "Ada-like" appears to be the probability of less
resistance from users who might be familiar with Ada and its
syntax. On the other hand, TDL may be more complex and less
flexible than it might have been because of the (partial)
adherence to the Ada rules.

TVL is a subset (or application of) VHDL 7.2. (TVL will be
upgraded to IEEE 1076 as part of future TISSS enhancements.) Like
TDL, TVL suffers somewhat from its adherence to an existing
standard, the most commonly cited problem being that TVL requires
excessive storage space. Unlike TDL, which is only "Ada-like",
TVL is truly VHDL, and therefore requires no processing to be
used with a VHDL simulator. In this case the benefits of using a
standard language, even one not well suited for the application,
exceed the disadvantages. Note that the upgrade of TVL to
IEEE 1076 will eliminate almost all existing objections to the
language, based on the greater capability of 1076 as compared to
VHDL 7.2.

2.20 TISSS SOW Task (4.2.12) - Validate And Verify All Software

Technical work accomplished in accordance with the Software Test
Plan (STP) included:
a. STP 4 - Software Development Files (SDF) containing unit and

CSC informal test cases
b. STP 5.2, 5.8 - Eight CSCI Software Test Descriptions (STD),

CSCI Software Test Procedures (STPR), and CSCI Software Test
Reports (STR)

c. STP 3.1 - Pseudochip 2 data (VALCIRC CMV)
d. STP 4.4 - Demonstration Scripts (refer to TISSS SOW 4.2.5)
e. STP 6.3 - Validation Test Suites for CAD Postprocessor,

Simulator, and TISSS Postprocessor

The Software Test organization should have been involved in TISSS
from the beginning of the software development effort. Due to
the the limited time and staff, overtime was required to
accomplish the task of generating the CSCI formal test
descriptions and procedures for each of the CSCIs. There was
also a large flux of people between the test team and the
software development team. This resulted in some training
required each time a new member joined the team and some
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confusion as well. Only due to some very key people was this
task accomplished so successfully.

Generic test documents should have been developed early within
the program schedule so that tailoring and addition of specific
details would be the only changes needed. Instead, refinement of
an extremely high-level methodology had to occur at a time when
the detailed implementation should have already started.

Use of the DEC VAX/Test Manager (DTM) software was explored to
enable easier re-verification of repeated formal tests. A more
detailed method for using this tool is needed to take maximum
advantage of its usefulness. It could be used for many of the
unit or CSC tests as well as the CSCI tests. Also, another DEC
product, Coverage and Performance Analyzer (CPA), in conjunction
with DTM might enable more efficient testing. An evaluation of
these two products and development of a proposed methodology
should be performed.

2.21 TISSS SOW Task (4.2.13) - Validate Adequacy And Accuracy Of
Generated TIDB's And Test Programs For New Devices

This task was one of the more difficult tasks undertaken during
the TISSS Phase II effort. The approach was taken that each data
structure in the tester'independent database would be either
independently analyzed for syntax and static semantics or
generated by TISSS tools. Some data structures fell into both
categories, in particular, all TDL based data structures. The
syntax and semantics analyzers for TDL were developed and a
combination of the VHDL analyzer and a TVL quick analyzer
developed for models and test vector sets. It was quickly
learned that expressing test patterns in VHDL would have severe
performance limitations without a quick analyzer tailored to a
small subset of TVL.

It was also decided that all TISSS functions would make use of
the internal data structures provided by the syntax and semantics
checking tools. These tools were called the TDL toolbox, the TVL
toolbox, and the VHDL Analyzer and Design Library Manager. The
VHDL Analyzer and Design Library Manager were furnished by the
Government as GFP. This set of tools could validate TISSS
generated TIDB data sets or non-TISSS generated data sets
submitted in TISSS Input Format (TIF).

The final validation of a microcircuit TIDB is the postprocessing
a tester independent program (TDL and TVL components of TIDB)
through a validated TISSS postprocessor adequate to perform the
test specified by the TISSS Output Format (TOF) subset of the
TIF.

The TISSS GR-18 postprocessor acts like a limited virtual test
machine and can be used to analyze resource requirements for the
TDL and associated TVL test specifications. However, validation
must be performed on at least one AMTE with the actual
microcircuit to assure that the TIDB correctly describes the
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microcircuit.

2.22 TISSS SOW Task (4.2.14)- Validation Test Suites

Validation Test Suites (VTS) were identified in the Requirements
Baseline to test each critical tool function for the CAD
Preprocessor (CP) CSCI, the Modeling Interface (MI) CSCI, and the
AMTE Postprocessor (AP) CSCI. Several designs were captured and
simulated on the Daisy CAD System to create data for the VTS.
Each VTS was documented by a published VTS manual and a reserved
Government VTS manual. Each VTS tests each critical tool
function as identified in the Software Test Plans by illustrating
valid test cases, proper results, and pass criteria. Each VTS,
except the CP VTS, also illustrates invalid test cases, improper
results, and fail criteria.

Ada software tools were written to translate Daisy netlist
descriptions to a hierarchical VHDL format, to convert
hierarchical VHDL to flattened VHDL, and to translate Daisy
simulation reports to TVL format. The translated Daisy data and
other data were used to create initial TIF related data sets
which were input to TISSS via the Design Input Subsystem. TIF
and TOF tapes were created for use by the Validation Test Suites
(VTS).

Ada software tools were written to translate TVL to Daisy
stimulus format and to automate comparisons of TVL data sets.
The CP VTS was executed; translating TIF tape data sets to the
Daisy CAD environment, simulating in the Daisy CAD environment,
and translating the Daisy CAD data sets to proper TIF formats
which were then validated. The CP VTS is limited by the
nonincorporation of the VHDL Simulator.

Legal and illegal test data was created and stored in the TISSS
database. The MI VTS was executed; translating structural models
and vectors to HILO formats, translating HILO fault simulator
reports to TISSS test vector fault dictionary format, translating
HILO true value simulator reports to TVL, and validating all
translations.

Ada software tools were written to generate pin definitions,
fixture configurations, boilerplate TDL, and TVL stress data.
The AP VTS was executed; translating TOF tape data sets into a
complete program for the GR-18, running the GR-18 program, and
creating output data sets which were then validated.

No si:iificant problems were encountered during the VTS
generation. The procedure followed for each published VTS manual
(CDRL-B034) and reserved Government VTS manual (CDRL-B035) was
specified by DID authority: DI-M-3413, which called out
DI-M-3413/H-114-1, format type b: Development Program Manuals,
was implemented.
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2.23 TISSS SOW Task (4.2.15) - Generate Test Specifications And
Programs

this option was not elected after the TISSS Phase II replan
caused by the late delivery of the VHDL support environment.
However, the original TISSS Phase II activity did include a task
for Honeywell to create TISSS descriptions and specifications cf
two Honeywell VHSIC Phase I chips. Honeywell developed some of
the software tools to migrate from their CAD system to TIF and
made a first cut at the MIL-M-38510 device specification before
the Government issued a stop work. The stop work was issued
because the late VHDL support environment was also needed by
Honeywell as GFP to complete their tasks for the VHSIC Phase I
TISSS demonstration.

2.24 TISSS SOW Task (4.2.16) - Training Course

The training material consisted of a training outline, training
material (an operational TISSS, viewgraphs, and a machine to
display the TISSS menus, commands and outputs) and a training
film. The prepared material was presented with minor changes
whenever it was decided by RADC and Harris personnel (seven
people were directly involved with the development and
presentation of the material) that additional simplification of
the information was needed. The course was divided into the
following topics with designated functional users associated with
each topic. However, most attendees decided to attend all the
topics.

a. TISSS Function Overview
b. Introduction to Software User's Manual
c. Introduction to TISSS
d. Local Eve Plus Editor
e. Creating TIF in CAD Environment
f. Creation of Test Description with TISSS
g. Model/Simulate Circuits
h. TOF Distribution
i. Generate Test Program
j. Creation of Test Philosophy Library with TISSS (SRUs and

their creation, TDL and Technological Information)
k. Test Program Execution on GP-18
1. Audit Functions (Design Existence Check, Syntax Check, Total

Fault Dictionary, SRU Validation, Device Certification)
m. Query Data Base (Pre-defined, Ad Hoc)
n. Generation of Output Products (TIF/TOF Tape, MIL-M-38510)
o. Manipulate SRUs Review
p. Add Users and Devices
q. Release Locked SRU
r. Archive and Restore Device/Versions,
s. Advanced TCL
t. Introduction to DBA Activities
u. ORACLE Startup and Shutdown
v. System Startup and Shutdown
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w. VMS Support Environment
x. Database Description
y. Additional DBA Activities

In addition to the previously listed topics, there were daily
hands-on sessions for students to become familiar with the TISSS
functions and the menu system needed to exercise those functions.
A comment program was made available to all attendees by RADC
provided enabled an easy way to document suggestions for
improvement, or to identify confusing topics throughout the
course. These comments were reviewed at the Final Review and a
plan established to address the comments in future enhancements.

Development of the training course as well as the course itself
was delayed due to availaoility of people most familiar with the
TISSS related concepts and to not interfere with other
conferences which TISSS attendees would normally attend. With
regard to the development of the training course, it would have
been better if an individual had been appointed earlier in the
contract to oversee the development of the course material. This
person required experience in teaching as well as development of
a format style for the presentation material and taped lessons as
well as the exercises to demonstrate competence.

Additional screening of attendees should have been made to ensure
that attendees had at least rudimentary knowledge of VAX VMS.
This elementary knowledge should have included directory
structures, moving around within directories, logging in/out of
the system, use of an editor such as Eve or EDT. In the future,
attendees without this knowledge should arrive a day early and
learn commands such as SET DEFAULT, DIRECTORY, EDT, LOGOFF, and
CREATE/DIRECTORY. DEC has an excellent on-line help library or
self-taught computer primer courses for this purpose. Additional
pre-requisites are included within the training material (CDRL
B019). Individuals requiring more extensive pre-requisites
should have attended the courses identified as pre-requisites.

Because seven key TISSS personnel were available during the TISSS
course, questions and problems encountered during the hands-on
sessions resulted in nearly one-to-one instruction. This enabled
a greater depth of learning to occur for each individual.

Also included within this course were the exercises relating to
each topic. Although only a few of the exercises were
complicated, they all required integration of lecture information
within the environment of working TISSS menus and commands. This
was probably one of the best features of the course, because it
enabled an easy method for attendees to status which TISSS
functions they had learned.
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2.25 TISSS SOW Task (4.2.17) - Install And Demonstrate TISSS At
RADC

Although it was not required as part of the contract or as a
CDRL, Harris felt it was absolutely necessary with a system the
size and complexity of TISSS that a Computer Software
Installation Manual (CSIM) be written. TISSS also interfaces
with several Commercial Off-the-Shelf Software (COTS) products
and their relationships had to be described in the CSIM. It is
recommended on any future projects similar to TISSS complexity
that a CSIM be required.

The CSIM discusses pre-installation activities involved with the
installation and customization of COTS software, the steps to be
taken during the installation of the TISSS software, and
post-installation activities such as establishing user accounts
and setting quotas. The installation of the TISSS accounts and
software were automated through use of a master command
procedure. The command procedure assumes the TISSS Configuration
Management account has been delivered on magnetic tape. The usd
of the installation command procedure greatly aided in assuring
the same steps were taken during each installation. It is
helpful to have as much of the installation procedure automated
as possible to prevent human error.

At the completion of the formal test for Build 1, Harris did an
"informal" installation at RADC in October of 1987. This
exercised the first draft of the command procedure and enabled
its completion. Because the VAX 8600 at Harris was being used
for the development of Build 2, the procedure could not be tested
in its entirety at Harris. This early installation also gave
RADC personnel advanced usage of most of the subsystems of TISSS,
so that they could gain familiarity with them and be able to
provide some feedback.

The CSIM was updated at the completion of Build 2 for features
that had been updated and additional features that had been added
for Modeling. Again, Harris was unable to thoroughly test the
command procedure, since the TISSS system at Harris was being
used for TRR and FCA preparation and testing.

At the completion of the CSCI formal test sell-off during May and
June of 1988, the TISSS system was delivered and successfully
installed through a two part installation (duration of 1 week per
part) by Harris personnel in the presence of the RADC customer
and IV&V contractor personnel.- The first installation identified
some minor errors in the CSIM and installation procedure (as
expected since the procedure had not been previously tested).
These problems were corrected at that time and solutions were
later incorporated formally into the installation procedures in
the CSIM document.

The second installation served to install some additional
security features incorporated into the TISSS after the first
installation and also to verify the new installation procedures.
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The second installation ran quite smoothly. The CSIM document
was amended slightly during the first run at RADC; then used
during the second installation to verify all the steps were
correctly outlined.

Following the installation, TISSS functions were demonstrated
first by a subset of the Demonstration Scripts (written for
System Validation, see SOW Task 4.2.5) mutually agreed upon by
RADC and Harris Program Management. All scripts were executed
successfully shortly after the final installation by RADC and the
IV&V people.

2.26 TISSS SOW Task (4.2.18) - Beta Site Program (Option)

This option was not selected so no work was performed on this
task.

2.27 TISSS SOW Task (4.2.19) - Preliminary And Final Technical
Brochure

A Preliminary Technical Brochure was prepared in parallel with
the software development at a time when many of the TISSS
features were unclear. The text was developed by technical
writers using data from program systems engineering personnel and
photos taken of various people and equipment to describe TISSS
operation. This initial effort, written by non-engineering
personnel, was weak in describing the true capabilities and
limitations of the TISSS. As a result of the decision to replan
the program, it was decided to update the brochure to the final
program baseline. The brochure was redesigned as a team effort
by Government and contractor personnel. The revised brochure was
delivered to coincide with the second Industry Review.

The approach taken to produce the Final Four-Color Technical
Brochure, shown as Appendix B, was to involve the program team
and the customer in a number of informal reviews prior to
finalizing the text and format. In this way resources were
conserved and the material was prepared and reviewed by a team
who understood the system. Some of the photos taken for the
preliminary brochure were used; others were selected from the
Harris photo library. The text is timely in that it refers to
the latest government thinking of how the TISSS will be used to
meet future DOD microcircuit requirements. However, this
brochure was written to describe the TISSS of the future where
many testers and fault simulators are supported. Today only one
tester is supported along with the two previously described fault
simulators.

2.28 TISSS SOW Task (4.2.20) - Coordinate With ERADCOM
Contractor

The Army portability of test software contractor was Titan
Systems, Los Angeles, California. Harris worked closely with
Titan Systems to establish an application domain for their
advanced portability concepts. It was mutually determined that a
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generic TISSS postprocessor with customizing modules per AMTE was
quite feasible. However, the effort to develop such a
postprocessor never came within the work scope of the TISSS Phase
II effort but will be addressed during follow-on enhancements.

2.29 TISSS SOW Task (4.2.21) - Provide IGES Capability

IGES capability was added to the TISSS by the integration of the
Commercial-Off-The-Shelf software (COTS) package, Palette.
Palette allows creation and editing of IGES graphics on
workstations and on the VAX VMS environment with color graphic
terminals. Palette was part of the TISSS Phase II proposal
baseline; however, the IGES capability became available later
during the Phase II program. TISSS provides IGES 3.0
compatibility for technical illustrations and engineering
drawings with the Palette software. Much effort was required to
get the COTS vendor to provide complete IGES capability.
Electrical applications for microcircuits are provided by VHDL
for the various models and EDIF for the manufacturing
representations. The TISSS currently defines the schematic as an
EDIF type entity. It would be quite reasonable to use IGES for
this representation and in fact far more commercial tools are
available for IGES drawings. IGES has an electrical/electronic
applications package for schematics and annotations. Thece
additional IGES entities may not be supported by Palette at this
time. This area needs further evaluation during the upgrade of
TISSS to the IEEE 1076 VHDL standard.

2.30 TISSS SOW Task (4.2.22) - Provide SQL G Software

SQL-GRAPHS is an ORACLE software product that is supported by and
used in conjunction with the Oracle data base management system.
The SQL-GRAPHS software was included for integration into the Air
Force host computer at RADC during the Replan of the TISSS
program to provide graphical data base report capability.

2.31 TISSS SOW Task (4.2.23) - Define ECLIPSE OCD And S/SS

The ECLIPSE Operational Concept Document (OCD) was delivered as
part of the ECLIPSE study effort. The ECLIPSE OCD describes the
broad Air Force and DoD needs that initiated the development of
ECLIPSE, a description of primary and secondary missions and
their relationships to Air Force and DoD needs, and a description
of the environment in which ECLIPSE would function.
Additionally, it contains detailed discussions of ECLIPSE
functions or capabilities, computer system functions required to
support the ECLIPSE functions, ECLIPSE operator and user
interactions. The ECLIPSE OCD also contains a discussion of the
engineering methodology used to define ECLIPSE, the ECLIPSE
Enterprise Model, descriptions of the ECLIPSE developing, using
and supporting Government agencies, and further data of interest
on the new concept of preemptive maintenance, LRM types and
configuration control, and data security issues. A glossary is
also provided. The ECLIPSE S/SS is discussed under SOW Tasks
4.2.25 and 4.2.29.
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2.32 TISSS SOW Task (4.2.24) - Define ECLIPSE Exchange Standards

Volume II of the ECLIPSE Concept Exploration Techuical Report
(CETR), delivered as part of the ECLIPSE study effort, addresses
the format specifications applicable to product definitions and
other data items exchanged between organizations involved in the
ECLIPSE enterprise. The purpose of this volume of the CETR is to
document that portion of the ECLIPSE study concerned with data
exchange standards, and to provide a stand-alone report of the
standards recommended for ECLIPSE use. This volume contains an
overview of the techniques that were used to accomplish the
objectives of the standards tasks of the ECLIPSE study, a set of
independent evaluations of MIL-Standards, other government
standards, and industry standards that were identified as
potentially governing the requirements for ECLIPSE information
standards or otherwise relevant to the ECLIPSE study. The
evaluations, where appropriate, propose extensions and
modifications to the standards, provide rationale for these
modifications, and define the potential roles of the standards in
ECLIPSE. In some cases, the evaluations also provide a list of
LRM design, test, and supporting data items covered by the
standard. These data item lists provided feedback to the
development of the ECLIPSE information model, which is itself an
ECLIPSE standard for the management of information objects and
their relationships and is included in the document.
Additionally, the CETR Volume II describes the ECLIPSE
Interchange Format, which documents the mapping of information
standards to ECLIPSE information objects and describes the
overall structure of the ECLIPSE digital data interface. A
section is also included which describes the ECLIPSE data sets
necessary to generate and represent a test program set for an
LRM. The CETR Volume II emphasizes product and test data for
Line Replaceable Modules (LRMs) and LRM-like items such as LRUs,
SRUs, and PCBs.

Due to the high level of interest and activity in this area,
additional funds for travel and research would have been useful.
There were several working groups and meetings on data standards
that were not attended, where ECLIPSE developments could have
influenced the proceedings and eventual outcome.

2.33 TISSS SOW Task (4.2.25) - Define ECLIPSE Functional
Requirements

The ECLIPSE System/Segment Specification delivered as part of the
ECLIPSE study effort specifies the functional, performance, and
interface system level requirements for the ECLIPSE. ECLIPSE
requirements are focused on supporting the avionics LRM. This
does not, however, preclude the support of LRM-like items
(Printed Circuit Boards (PCBs), Shop Replaceable Units (SRUs),
etc.) by ECLIPSE. ECLIPSE functions were selected by modeling
the all functions in the entire ECLIPSE environment (enterprise)
in an ECLIPSE Functional Model, and then identifying and
elaborating on, those functions that ECLIPSE automates or
interfaces with. The ECLIPSE Functional Model and supporting
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narrative are included in the ECLIPSE System/Segment
Specification.

Because of funding and time constraints, a complete appreciation
of the goals, objectives, and functions of the Logistics
Management Systems (LMS) modernization program (REMIS, DMMIS,
etc.) was not developed until late in the study. This caused a
replication of the functions of these systems in the ECLIPSE
draft preliminary system specification, and resulted in some
criticism at the SRR. These functions were deleted from the
final documents.

2.34 TISSS SOW Task (4.2.26) - VHSIC TISSS Evaluation

Volume III of the CETR, delivered as part of the ECLIPSE study
effort, contains the evaluation of the VHSIC TISSS concepts with
regard to the ECLIPSE operational concepts. The CETR Volume III
includes discussions of how TISSS can become a part of the
ECLIPSE environment by supporting LRM components, and, in what
ways TISSS can provide the basis for the development of the
ECLIPSE system. A summary of the evaluation findings is
included.

2.35 TISSS SOW Task (4.2.27) - Evaluate Tools For ECLIPSE

Volume III of the CETR, delivered as part of the ECLIPSE study
effort, contains an evaluation of existing tools for possible
integration into the ECLIPSE. These tools include CAE/CAD tools,
Automatic Test Pattern Generators, logic and fault simulators,
and TPS Automation tools. Summaries of the evaluation findings
are provided, as well as recommendations.

2.36 TISSS SOW Task (4.2.28) - Evaluate Host Environments

Volume III of the CETR, delivered as part of the ECLIPSE study
effort, contains an evaluation of candidate ECLIPSE host
environments based on the developed requirements. An ideal host
is compared to available products. Hardware and Software
requirements are addressed, as are system organization and
communication requirements. Information concerning Optical
Write-Once, Read-Many (WORM) disk technology is also provided.

2.37 TISSS SOW Task (4.2.29) - Specify ECLIPSE System
Requirements

The ECLIPSE System Specification, delivered as part of the
ECLIPSE study effort, establishes the preliminary requirements
for the ECLIPSE System. It specifies the system level
functional, performance, and interface requirements for the
ECLIPSE. This document identifies all applicable documents, all
internal/external interfaces, and any other information necessary
to establish a complete set of system requirements for the
ECLIPSE. Appendices contain the ECLIPSE functional model,
ECLIPSE information model and the ECLIPSE data dictionary.
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2.38 TISSS SOW Task (4.2.30) - ECLIPSE Concept Exploration
Technical Report

Volume I of the CETR, delivered as part of the ECLIPSE study
effort, documents the results of the trips and telephone
conversations by ECLIPSE team members in relation to the ECLIPSE
study. Telephone and trip reports are contained in separate
sections. with each section being organized chronologically. The
conten of Volumes II and III of the CETR are discussed above.
Descriptions of the ECLIPSE system functions and characteristics
are documented in the OCD and SS. Assumptions, where
appropriate, are documented throughout all the ECLIPSE documents.

2.39 TISSS SOW Task (4.2.31) - Coordinate With Other ECLIPSE
Contractor-

A coordinated research and requirements development process was
made with the additional ECLIPSE effort contracted by the
Government. Daily teleconferences were made and joint monthly
review meetings were held. Joint fact-finding trips and
presentations were made to the various involved Government
agencies and office space was provided at the Harris facility to
help prepare inputs to the documents. The ECLIPSE TIM
presentation was produced and presented as a joint effort.

2.40 TISSS SOW Task (4.2.32) - ECLIPSE Insertion Plan

The ECLIPSE Insertion Plan, delivered as part of the ECLIPSE
study effort, describes a top level concept for the insertion of
the ECLIPSE system into the USAF Air Force Logistics Command
(AFLC). It identifies the AFLC organizations and other Air Force
organizations that interface to ECLIPSE. It also provides a
preliminary Line of Code (LOC) estimate for ECLIPSE.

2.41 TISSS SOW Task (4.3) Reviews

Technical reviews were generally scheduled on a quarterly basis
throughout the term of the program. Critical Milestone Review
meetings such as Preliminary Design Review (PDR), Critical Design
Review (CDR), and Test Readiness Review (TRR) were conducted in
accordance with the procedures established by MIL-STD-1521B
(USAF), "Technical Reviews and Audits for Systems, Equipment, and
Computer Software" while open presentations given to industry and
government representatives and regular quarterly reviews were
presented in contractor format.

2.42 TISSS SOW Task (4.3.1) - Phase I Kick-off Meeting

A Phase I Kickoff meeting was held on 28-29 August 1984 at
Melbourne, Florida for the purpose of bi-lateral familiarization
of the TISSS team and tri-service government representatives and
to discuss the technical issues and the TISSS software
development approach. Valuable insight and direction was
provided from the RADC reviewers to scope the program toward
meeting Government needs.
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2.43 TISSS SOW Task (4.3.2) - Phase I Preliminary Specification
Review (PSR)

A Phase I Preliminary Specification Review was held on 26-27
February 1985 at Melbourne, Florida to review contractor progress
and to provide government critique and technical direction as the
software system design evolved. Again, the RADC reviewers were
most helpful in driving the TISSS team to consider a flexible
approach toward test philoscphy. The concept of a test
philosophy library was developed during this period based on
Government reviewer feedback. Honeywell was also represented at
this meeting and provided constructive feedback as well.

2.44 TISSS SOW Task (4.3.3) - Phase I Interim Design Phase
Presentation

A Phase I Interim Design Phase meeting was conducted on 3 October
1984 at Ft. Monmouth, New Jersey to review the initial system
design of the TISSS. The basic top level design was presented
and although much work 'remained to convert this design
information to a producible system specification, the Government
accepted and approved the design requirements and approach. It
was during this time that continuous and open communications
channels provided the valuable feedback and direction necessary
to enable the contractor to design a system that could ultimately
succeed.

2.45 TISSS SOW Task (4.3.4) - Phase II Two Critical Milestone
Reviews (CMR)

Two Critical Milestone Reviews were specified by the contract
Preliminary Design Review and Critical Design Review. The
Preliminary Design Review was conducted on 15-16 January 1986 at
Harris Corporatp Headquarters in Melbourne, Florida. The purpose
of the review was to present the top level design of each of the
Computer Softwari Configuration Items (CSCIs) as well as to
discuss the Software Test Plan and the Configuration Management
implementation plan. Quality Assurance procedures were discussed
as well as important future enhancements to TISSS. A government
tri-service management critique was held on both days to provide
the contractor direction for feature improvements through
response to action items. The Critical Design review was held on
23-25 September 1986 again at the Harris Corporate Headquarters
in Melbourne, Florida. The objective of this review was to
review the Detailed Design phase of the TISSS system including
all CSCIs except for Modeling Interface. Test Engineering test
macro development data was reviewed in detail as was CSCI test
methodology. To give the reviewers an understanding of how the
TISSS system operated at a systems level, a TISSS System Scenario
was presentecd showing how all the design information was
prepared and input into the TISSS Data Base (TDB). The
iateractive test engineering data input was also covered as well
as operations and system controller functions with the DEC VAX
8600 computer. Again, the Government tri-service management
committee critiqued the presentation and provided direction and
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scope through a request for action item responses.

2.46 TISSS SOW Task (4.3.5) - Phase II Quarterly Interim
Progress Reports

The program was generally structured to have Critical Milestone
Reviews (CMR's) on as close to a quarterly basis as practical,
where the time between major reviews exceeded the three month
period, interim progress reviews were conducted. These meetings
were held at tri-service locations in order to expose as diverse
a government population as possible to the TISSS concepts and
progress on the software development. These locations were at
Crane, Indiana for the U.S. Navy, at Washington, D.C. (Ft.
Monmouth) for the U.S. Army, and at Rome, N.Y. for the U.S.
Air Force. A total of five such meetings were conducted.

2.47 TISSS SOW Task (4.3.6) - Phase II Two Open Industry Reviews

The first Industry Review for Phase II was held in Phoenix,
Arizona October 15-16 1986. Approximately 50 representatives
were present from government and industry.

The intent of this review was to present the ccacepts of TISSS
Phase II. A technical overview was presented which emphasized
TISSS objectives and top level features. Priority features were
standard interfaces from CAD systems, the test specification
language, and the tester independent data base. A software
overview was also presented. At this point, Phase II Critical
Design had been completed for all subsystems within TISSS with
the exception of Modeling. Modelinj had been stopped due to the
development schedule of the VHDL environment. Focus for this
review was on the software system architecture, software tasking,
VMS configuration parameters, methodologies, and line of code
estimates. Each subsystem presented reviewed functions and
software architecture.

For the first time a TISSS user scenario was presented to
Industry. The intent was to give reviewers a system level view
of how the TISSS would interact with a user, as depicted by
Figure 2.47. An actual on-line demo was given of the Design
Input Subsystem. This exemplified the tester independence nature
of -ISSS by showing how a user enters test specifications for a
particular device.

The Test Vector Language (TVL) developed for TISSS was
introduced. The function of the language was presented along
with the syntax and semantics.

The majority of feedback received centered around the test
specification language. Recommendations suggested were evaluated
and basis of estimates generated. Two major changes were
incorporated. These were to allow Test Macros to reference test
parameters of an entry in the Electrical Performance
Characteristics Table (or specify the parameters within the
macro), and to reformat Table III.
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FIGURE 2.47 TISSS OPERATIONAL SCENARIO

The eond Industry Review was held in Melbourne, Florida June
22-21 _:788, with approximately 100 industry and Government
representatives in attendance. The intent of this review was to
present the Modeling Subsystem to Industry along with a process
flow through the TISSS. Special emphasis was given to the Test
Vector Language, 'VL. A thorough presentation on TVL was given
with Industry and government giving useful feedback on
improvements. For the first time, CAD tools generated on the
program were introduced to Industry with an opportunity to sign
up for distribution.

An on-line demonstration was given at the review which included
loading data into TISSS, manipulation of that data, test data
generation, fault simulation, and postprocessing. The intent was
to show users one scenario of TIS&S usage with emphasis on test
generation and simulation. The four-color TISSS brochure was
provided to the attendeec.
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2.48 TISSS SOW Task (4.3.7) - Phase II FCA And PCA At RADC

The Functional Configuration Audit (FCA) and the Physical
Configuration Audit (PCA) was conducted both in Melbourne,
Florida and in Rome, New York respectively. The FCA was
performed in Melbourne between 23 March 1988 and 27 April 1988
with the goal of verifying that the actual TISSS operation
complied with the Software Requirements and Interface
Requirements Specifications. Once FCA had been sucessfully
completed, the TISSS was installed on the RADC computer system to
demonstrate transportability. After Installation, the PCA was
conducted between 14-17 June 1988 to establish the Product
Baseline by examining the as-built version of the TISSS against
its design documentation. In addition, the acceptance test
requirements performed by the contractor Quality Assurance
organization as reflected by the documents were evaluated to
their adequacy for acceptance of the software.

2.49 TISSS SOW Task (4.3.8) - Phase II Final Presentation

The Phase II Final Presentation was held in Alexandria, Virginia
on 12 October 1988 to summarize the TISSS software development
effort and to close out action items from Test Readiness Review
(TRR), Functional Configuration Audit (FCA), and Physical
Configuration Audit (PCA). A preliminary draft of the TISSS
Final Report was given to the RADC reviewers to critique. This
critique proved quite helpful as the RADC reviewers were able to
question areas that required clarification to a reader unfamiliar
with the TISSS.

2.50 TISSS SOW Task (4.3.9) - ECLIPSE Kick-off Meeting

An ECLIPSE kick-off meeting was scheduled for August 13, 1987 at
RADC, but was delayed by the Government until September 17, 1987.
The technical issues were reviewed and discussed. The meeting
was attended by RADC personnel only.

2.51 TISSS SOW Ta.,, 4.3.10) - ECLIPSE Technical Interchange
Meeting

The ECLIPSE Technical Interchange Meeting. was held on February 22
through 24, 1988, at Melbourne, Florida. Approximately 120
Government and industry personnel were present. Topics discussed
included: the MASA program, ATF Avionics and JIAWG information,
VHSIC TISSS and ECLIPSE evolution, ECLIPSE scope, objectives,
status, and methodology, ECLIPSE operational concept, ECLIPSE
engineering approach and functional model, ECLIPSE requirements,
design capture and validation, TPS generation, LRM certification,
logistics support, ECLIPSE information model, communications and
security considerations, data standards, and ECLIPSE program
plans and summary.
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2.52 TISSS SOW Task (4.3.11) - LRM Standards Meeting
Participation

This task was redefined as attending the MASA Open Forum,
December 1-3, 1987, in Dayton, Ohio. One Harris ECLIPSE
technical representative was present. Harris prepared
presentation materials for the Government to use in briefing the
forum on the ECLIPSE activity, and supported the working group
discussions and side meetings during the meeting.

2.53 TISSS SOW Task (4.3.12) - ECLIPSE System Requirements
Review

The ECLIPSE System Requirements Review was held on May 3-5, 1988,
at Dayton, Ohio. Approximately 100 Government and industry
personnel were present. Topics discussed included: VHSIC TISSS
and ECLIPSE evolution, ECLIPSE goals, objectives, status, and
methodology, ECLIPSE research and mission analysis, ECLIPSE
operational concept, ECLIPSE engineering methodology, ECLIPSE
functional model, ECLIPSE requirements and interfaces, ECLIPSE
information model, CALS Initiative (presented by Air Force
personnel), ECLIPSE host evaluation, ECLIPSE tools evaluation,
VHSIC TISSS evaluation, data standards, and other ECLIPSE system
requirements.

2.54 TISSS SOW Task (4.3.13) - ECLIPSE Final Government Meeting

A final Government meeting was held on May 5, 1988, at Dayton,
Ohio, immediately following t,.e ECLIPSE System Requirements
Review.

2.55 TISSS SOW Task (4.4) - VHDL/TVL Validation Software
(Option)

This option was not selected so no work was performed on this
task.

3 TISSS MASTER SCHEDULE

Figure 3.0 shows the master schedule for the activities that were
performed on the TISSS Phase II program.
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4 TECHNOLOGICAL INNOVATIONS

The TISSS program required a team effort between the multiple
disciplines of Software Engineering, Test Engineering and
Simulation Engineering. The success of the program is due to
this teamwork and the technological innovations that grew out of
teamwork.

4.1 Large Ada Program With DOD-STD-SDS Methodology

During the time period of the TISSS project there had been a
debate aDrut the way the Ada language and DOD-STD-SDS (later,
MIL-STD-2167) could be used together to produce a synergistic
result. TISSS was one of the first projects of significant size
to use Ada as the implementation language and DOD-STD-SDS as the
governing military standard. Most of the lead software personnel
on the TISSS project brought a background of software development
under government standards and a majority of the engineers had
some experience with the Ada Language but no one had experience
with Ada and DOD-STD-SDS together.

4.1.1 Standards Outlining The Ada And DOD-STD-SDS Process

The Software Standards and Procedures Manual created for the
TISSS project defined the requirements and products of each phase
of the development as they related to Ada and DOD-STD-SDS. The
definitions of a Top Level Computer Software Component (TLCSC), a
Lower Level CSC (LLCSC) and a Unit were also identified. These
definitions are important because DOD-STD-SDS specified TLCSCs,
CSCs and units in terms of functional requirements whereas Ada is
designed to utilize Object Oriented Design (OOD) techniques.

The SSPM also outlined the development directory structure,
methodology, PDL standards, coding standards, naming conventions,
Software Development File requirements, comment headers, diagram
conventions and DOD-STD-SDS templates. These items were fully
defined so that personnel transitions during the project would
have a minimal training impact and that consistent, usable
documentation was a product of the design effort.

4.1.2 Aplying The Ada Structure To DOD-STD-SDS

The development team had experience using government functional
development specifications while also possessing skills in small
and moderate sized Ada projects utilizing Ada methodologies
without the guidance of a DOD-STD-SDS requirement. Therefore,
the first concern was to integrate Ada methodologies with the
DOD-STD-SDS Specification. The selected approach was to develop
Ada software using Object Oriented Design (OOD) and functional
methodologies. Next, a mapping of the design into the functional
definitions of TLCSC, LLCSC and units was completed. The Ada
design was used to create functional Yourdon charts depicting the
hierarchical or operational calling structure of the software
design. This approach to integrating Ada with DOD-STD-SDS
produced a functional or hierarchical document from an Ada design
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and methodology.

The next hurdle was with Ada packages within a CSCI. The
solution was to place the packages in a logical order in an
appendix of the design documents, but this approach hindered the
readers ability to review a CSC or unit without having to refer
to the appendices for pertinent information.

These difficulties with Ada and DOD-STD-SDS prompted the
formation of a group to resolve these issues for TISSS, TISSS
follow-on and other Ada/DOD-STD-SDS projects. This group would
review lessons learned memos and suggestions and would
continually evolve the SSPM to better deal with Ada documentation
issues.

The latest approaches were used on Build 2 for the TISSS project.
These methods state that a TLCSC which satisfies several
logically cohesive functional, interface or performance
requirements logically cohesive would include the description of
the Ada package which encompasses the requirements of the TLCSC.
The LLCSC which satisfies a subset of the TLCSC requirements
would include the description of the Ada package that implements
the LLCSC. The inits that satisfy individual requirements would
still be physical entities implemented in code, namely
subprograms, tasks and instantiations of generic subprograms.
Units may contain embedded subprograms, tasks or generic
instantiations that support the unit's required operation. These
embedded modules would be undocumented as separate units but
would be included in the section of the unit being supported.

This approach to software development provided better project
tracking by correlating DOD-STD-SDS definitions with physical
products. The engineer could assess the progress and
traceability of the requirements he was responsible for
implementing. These definitions insure that the design was fully
developed prior to the coding phase.

4.2 Hybrid Data Base

Many applications require a combination of capabilities offered
by a DBMS and host file system. There is a whole class of newer
applications which deal with engineering designs, where massive
values of unstructured or loosely structured information must be
organized and managed. The TISSS System implemented by Harris
Corporation is an example of a hybrid database for an engineering
design and test application. TISSS is written in Ada but
utilizes the services of the ORACLE RDBMS and the VAX/VMS file
system.
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4.2.1 The Requirements For A Hybrid Database

Many applications demand services which extend beyond those
offered by conventional Database Management Systems. In
particular, applications dealing with engineering designs demand
both the services offered by Database Management Systems and
those offered by file systems, plus some extensions not offered
by either.

Some of the requirements of design applications which are not met
by conventional DBMSs are:

a. Efficient support for extremely long objects (10KB - 100MB
and even longer).

b. Effective support for extremely complex and dynamic
structural relationships (massive and dynamic schemata).

c. Archive Capabilities - Designs will often exceed available
on-line storage. A convenient way to archive and restore a
specified design is needed.

d. Version history - the ability to roll a complex object back
to a previous state.

e. Support for long transactions, which may extend over days or
weeks.

f. Support for specialized Change Control - Engineering Designs
commonly undergo a series of certification steps, where each
level of certification implies a different set of rules about
what operations are legal against a complex object.

On the other hand, these applications also require all the
conveniences and services of a DBMS, such as support of multiple
concurrent users, flexible query and reporting, transaction
control,database recovery, security, etc. In addition, the
productivity gains which Relational DBMSs have made possible by
isolating applications from underlying data structures and
storage schemes should be made available to engineering design
applications.

Currently, a great deal of research is being devoted to the
solution of these problems. However, it will be many years
before these research products reach the level of maturity,
power, and robustness necessary to support production engineering
information systems.

In the meantime, one approach which has been used successfully at
Harris Corporation is that of the hybrid database. In such an
implementation, a monitor or administration subsystem is
positioned between the applications and the hybrid database. The
monitor binds the DBMS and the file systems together, and
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presents the user or client application with the appearance of a
single integrated database. The implementation details of what
information resides in each component is hidden from the user to
the maximum possible extent. Instead of a set of file I/O and
SQL commands, the client application is presented with a more
abstract set of commands which allow him to manipulate
"information objects" in a manner which is meaningful to the
application, without regard to the underlying storage scheme.

Another consideration is that the functional requirements
analysis and preliminary design steps are even more critical than
usual. The analyst must determine the appropriate level of
abstraction, not only for the static data model (structural
semantics), but also for the operations on the data objects
(behavioral semantics). It is not practical or desirable, as in
a classical Information Engineering exercise, to reduce the data
entities to third or fourth normal form. An attempt to normalize
the design and test information for even a simple Integrated
Circuit would yield thousands of relations, with tens of
thousands of attributes. In addition, a schema based on such a
model would be extremely unstable and dynamic. The analyst must
therefore decide where the data model stops "caring" about the
structure of the data. Similarly, it would be impractical to
provide every application with a customized set of operations.
The analyst must determine that subset of operations which meets
the needs of the greatest number of users. He must then
establish all the underlying behavior associated with each
operation so that users do not conflict with each other, and the
integrity of the database is maintained. For each operation, the
locking and security semantics must be determined; i.e., the
rules of object behavior must be determined and enforced for each
different level of certification and user authorization.

4.2.2 Design Issues For The TISSS Administration Subsystem

The Administration subsystem encapsulates the ORACLE relational
database and VMS file portions of the database. The view
presented to client applications is that of objects and
operations on those objects. The major objects of interest to
applications of the TISSS are: Devices (ICs), Versions of
Devices, and Selectable/Replaceable Units (SRUs) which contain
descriptive information pertaining to the design and test of a
particular Version. SRUs may be accessed independently or
organized in,.o Groups for application convenience. Applications
manipulate the objects (Devices, Versions, SRUs and Groups)
through a set of commands, such as Copy, Set Certification
Status, Retrieve for Update, Roll Back to Previous Revision, etc.
The action taken on each command is dependent on:

a. The type of Operand (the object being operated on)
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b. The User's Authority to perform the Operation against this
Object

c. The Certification Level of the Object (either directly or by
inheritance)

d. Whether the object is currently in use (either directly or by
inheritance)

e. Whether the object is on-line or archived

Providing this degree of transparency to storage media has proven
to be a non-trivial technical problem. In TISSS, the
Administration Subsystem (Admin) is only concerned with
controlling VMS files as typed objects; except for general
knowledge of classes and states it is unconcerned with the
content of the files. This allows the Admin Subsystem to treat
files as objects to be managed, regardless of size or internal
representation. Using this approach allows generic code to
manage all file types. This same approach is applied in layered
networking applications, where the lower levels deal with the
actual network control details and the data content is
uninterpreted.

The Admin Subsystem provides access to a set of objects through
operations defined on those objects. In doing this, an Ada-like
view of the database is presented to the application program.
For example, when a request to create a SRU is made, Admin will
translate the request into operations on ORACLE data and
operations on VMS files. The entire process is managed as a
logical transaction'. Transactions are defined as operations on
objects. Thus if the operations Copy, Create, Delete, and
Replace are defined on an SRU, four transactions would be
created; one to handle each operation. In this way, Admin
appears to be a set of Ada packages, adhering to the
Object-Oriented Design (OOD) methodology.

4.2.3 Data Integrity

During transaction processing, Admin must maintain consistency
between the two components of the database - ORACLE control data
(called the ORACLE portion) and the VMS files (called the VMS
portion). To provide this consistency, the Admin system was
designed so that the database would be consistent after each
transaction. This relieves application programs from concern
about data consistency, and therefore simplifies the design and
development of applications.

Since the database must be consistenc after each transaction, the
processing within each transaction is very important. Admin must
maintain certain relationships between ORACLE control records and
VMS files while preserving the relationships between ORACLE
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control records themselves. For example: An SRU must both "own"

a file and must be associated with a Version (of a Device).

4.2.4 Data Protection

This section deals with protecting the hybrid database from
unauthorized access. ORACLE provides excellent security features
through 'GRANT's. Column level access can be restricted in this
way, providing complete vertical security. But how can
horizontal access be limited, since access to SRUs must be
granted on a per user basis? Harris concluded that ORACLE
security was not enough for the complex requirements of security
in a Hybrid Database.

Further analysis led to the conclusion that VMS security was also
inadequate to fill in the gaps in ORACLE security. VMS security
is used to prevent casual users from perusing the VMS portion of
the database. Using VMS security to prevent access from within
Admin would defeat the data model completely, since Admin does
not permit ANY control information to be kept with a VMS file.

The solution was to create a hybrid security system. Privileges
or levels are associated with objects in the database as well as
with each user in the system. Admin must validate each access to
data during the beginning of each transaction based on the values
of these privileges (or levels).

However, this security scheme was still insufficient, since the
Admin system had to provide a SQL interface to the control
records for any user to use. This access is provided by using
ORACLE security. A series of ORACLE accounts is created, each
having certain 'GRANT's on views of the real control information.
When a DO SQL transaction is processed, Admin uses the
appropriate "Unprivileged" account to provide the read-only SQL
access. By manipulating ORACLE Accounts in this manner, the user
has the full power of the select SQL statement, the database is
protected from unauthorized changes, and Admin is relieved of the
necessity to scan the incoming SQL for potentially dangerous SQL
statements.

4.2.5 Transaction Logging

One requirement of TISSS is to log all transactions against the
database, including the success (or failure) message for that
transaction. First, ORACLE Auditing was explored. ORACLE
provides extensive auditing based on user name (or user ID).
While this Audit would show tables accessed, it would disallow
Admin to insert information regarding VMS operations. An
alternative approach was devised in which several logging tables
were defined. One table holds all requests, the othe- hnIs the
results, both intermediate and final. This solution ,"ow Admin
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to insert VMS errors and ORACLE errors side by side in log
tables, and also allows easy identification of incompleted
transactions. In the unlikely event that the log record cannot
be inserted into ORACLE, Admin logs the error to a special dump
file.

4.2.6 Locking

In addition to ORACLE locking, the TISSS Database requires
several types of locking mechanisms. Locks that are used during
a transaction to prevent concurrency conflicts are called DYNAMIC
LOCKS. Locks used to check-out SRUs for long transactions are
called STATIC LOCKS. Change control locks for setting and
enforcing Certification states are called PERMANENT LOCKS. All
locks in the TISSS database are enforced hierarchically - that
is, locks on a higher-level object are inherited by the
lower-level objects.

4.3 Product And Test Specification Language

Three major interfaces were required for the TISSS program in
order to capture product and test specifications. Two interfaces
were based on the VHSIC Hardware Description Language (VHDL),
while the third interface required a completely new
specification.

The program requirement was to develop interface specifications
for three main data entities that formed a part of a product
specification in TISSS. These are model descriptions, both
behavioral and structural, for reprocurement as well as
validation and certification of a device; test vectors containing
stimulus and response; and test specifications for MIL-M-38510
qualification and testing of a device.

Model descriptions to be entered into TISSS must follow syntax
and semantic rules of VHDL. A complete specification had to be
developed for both behavioral and structural descriptions. As
each VHDL specification evolved, it was necessary to prove the
specification by analyzing, model generating, and finally
simulating some known device. The device was completely captured
in VHDL following the rules imposed by the TISSS specification.
Simulation output was compared against output from other
simulation environments to ensure design intent and proper
representation of functionality.

The major area of concern was in the specification for structural
models. Structural models are required for fault simulation in
order to validate the fault coverage requirement for a device. A
VHDL fault simulator was unavailable. Therefore, it was
necessary to take a VHDL structural description entered into
TISSS and translate it to either HITS or HILO-3 modeling
language. Due to the expressive nature of VHDL, a simple mapping
was impossible. Functions expressible in VHDL could not easily
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be expressed in either HITS or HILO-3. VHDL for structural
models therefore, had to be restricted. This resulted in
defining a basic set of primitives that could easily be
translated between HITS and HILO-3. For each primitive it was
necessary to develop the interface declaration, architectural
body description, and associated timing characteristics.

At the device level it was necessary to specify syntax that would
be recognizable to translation software. The syntax had to be
such that a device could be simulatable once it became a
component of a VHDL test bench. Complete specifications for
behavioral and structural models are located in the Interface
Requirement Specification (IRS), Software User's Manual (SUM),
and Software Requirement Specification (SRS) for Modeling
Interface.

One significant contribution by Harris in the area of VHDL was to
create a Test Vector Language (TVL). The top level requirements
for the language specification was: the language should be a
subset of VHDL 7.2; it should be concise enough to serve as a
standard; and it should be easily translatable to a variety of
simulators and AMTEs.

It was necessary for TVL to fulfill requirements of both
simulators and testers. TVL describes stimulus and response,
time of transitions, strobe windows, and accuracies for timing
measurements. It is simulator and tester independent and
therefore is not biased towards any test equipment or simulation
environment. It is a subset of VHDL 7.2. The current version of
TVL in TISSS took on a flattened tabular format. Vectors are
represented sequentially in time order. Emphasis lately has been
to upgrade TVL to a more hierarchical structure and to IEEE 1076.
The data content of TVL is for the most part inclusive but its
representation could be enhanced. Effort is proceeding in that
direction with a working group established to involve government
and industry to develop a TVL that will eventually become a
proposed IEEE standard.

The plans to upgrade the TVL may be found in a memo titled
"System Engineering Plan for TVL Enhancement" dated 18 July,
1988, revised 16 September 1988, which is available from RADC.

TVL and model descriptions are based on VHDL. There is one other
interface to TISSS that was developed using an Ada like syntax
rather than VHDL. A language had to be chosen or developed that
could provide TISSS with an easily representable and
understandable test specification.

VHDL and ATLAS were evaluated as two possibilities. Other
languages evaluated were too specific towards particular test
equipment. ATLAS was too comprehensive and contained difficult
parsing constructs. VHDL would have been a good choice but not
much was known about the language at the time. The one concern
was the rigid record structure imposed. VHDL supports no variant
records, a required feature.
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It was decided that a new language similar in Ada constructs
would be developed. The entire software team would have Ada
experience thus diminishing the learning curve. Development of
parsers and tools could be expedited.

The Test Description Language (TDL) was developed along with the
TDL toolbox. The toolbox parses TDL into internal data
structures. The TDL toolbox is common tool used by many TISSS
subsystems.

TDL is a very focused language that was developed for two top
level purposes. First, TDL was developed as a means of
specifying test requirements for a particular class and
technology of devices, and secondly, to capture test descriptions
for a particular device. In TISSS, the specification of test
requirements is the Test Philosophy. A test philosophy is
developed for a classification of devices. Multiple data files
make up a test philosophy. However, only one test philosophy is
specified in TDL. This is the Test Plan Requirement (TPR). The
TPR defines the philosophy for testing a particular type of
device. It describes what tests should be performed in order to
qualify that device.

A test description is developed for one particular device.
Multiple data files make up a test description but only the Test
Plan Build (TPB) is specified in TDL. The TPB describes how the
testing will be carried out for a particular device. The TPB
must correspond to the TPR. It is the instantiation of the TPR
for one particular device.

In TISSS, VHDL and TDL play an active role in interface
specifications. These languages are necessary in order to fully
capture product and test specifications for a device entered into
the TISSS. Representations such as these are required in order
that data can be validated, certified and finally qualified.
This process ensures completeness and accuracy of data required
for today's complex integrated circuits.

4.4 Automated Postprocessing

The key to Postprocessor operation is the input template code.
Template code consists of plaintext interspersed with directives.
Directives are identified by a prefix character and obey a
defined syntax. Plaintext is any sequence of zero or more
characters that does not contain the directive prefix character.

The Postprocessor expands template code by copying plaintext
verbatim to the output until a directive is reached. Directives
ace not copied to the output but are treated as instructions to
the Postprocessor. However, a directive may generate text that
is written to the output. A directive may also result in a
change in control of the Postprocessor, for example, causing the
Postprocessor to read from a different piece of template code, or
write to a different output. Once the directive has been
executed, the Postprocessor resumes copying plaintext to the

6o



output, waiting for another directive. This process is shown in
Figure 4.4 in flowchart form.

The Postprocessor is able to generate a test program because some
directives operate on data from the test specification. Some
directives allow this information to be inserted into the output,
while others guide Postprocessor expansion. For example, a
directive might cause a voltage from the test specification to be
written to the output. The surrounding plaintext, when processed
as a test program, might instruct a tester to set a power supply
to the test specification voltage.

The most important characteristic of the Postprocessor is that
there are no restrictions placed on the plaintext. Furthermore,
directives that develop output, generate the smallest possible
amount of output, so as to reduce the bias towards a particular
format or syntax for the output. As a result, the Postprocessor
can generate GR-18 test programs, tabular reports, and VAX VMS
DCL command procedures with equal ease.
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TESTER DEPENDENT

IME0EPENDEfM
TE'P POST PROCESSOR CONRCJRAT"iI

DE FILES

T E STIER S PE CI IF 1C
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5 TISSS LESSONS LEARNED

TISSS was one of the first large Ada programs undertaken by the
contractor and the first program to follow the MIL-STD-2167
dev lopment methodology with Ada. Many IP.sons were learned from
th software development effort. Thesu lessons are founded on
the knowledge base of the pers,..n=L involved in performing the
tasks and may differ from lessons learned at other companies,
based on the different work environment and the software
development methods used. S..ne of the ideas expressed here may
offer nothing new to some people, but bear repeating, as these
oLservations may be useful to those undertaking a similiar
project. The Lessons Learned described nere are alphabetically
organized into twelve categories - Common Code, Communications,
Configuration Management, DID Tailoring, Documentation,
Line-of-Code (LOC), Met-ods, Metrics, Personnel, Prototyping,
Schedules, and .ools.

5.1 COMMON CODE

1. COTS and Host Interfaces. An effort was made in the
preliminary design phase to of TISSS to reuse Commercial
Off-the-Shelf (COTS) software and host operating system
utilities and tools wherever possible to accomplish
functionality. This Design-to-Cost approach was beneficial
in that development costs were reduced and it enabled the
system to be completed on schedule. For a single system
development, this is the recommended approach. However, with
the broid community of TISSS users, this method may have some
drawbacks. COTS usage ties the system to a particular
computer platform which may be unavailable to all potential
users, and it requires that the users purchase licences and
rights to products they may not otherwise want. Platform
Fortahility is an issue being studied for Line Replacable
Module (LRM) extensions to TISSS.

2. Reusable software. In order to achieve cost reductions
through the use of reuseable software, an early agreement
should be reached between the contractor and '-he government
on the procedure of how to handle the documentation and the
system/interface testing of the reused software.

3. Common code. Cteation of "c)mmon coda" proved to be a method
for improving the productivity of the software development
team. Common code is code tnat performs a function used by
several areas within the system. For example, in TISSS,
common code was used across CSCIs or subsystems and across
TLCSC's within a CSCI. Observations concern:Lng the use of
common code are:

a. Potential areas for the application of common code seemed
to surface when an object-uriented d&sign methodology was
followed.
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b. Since the chief programmer is in a position to recognize
commonality across CSCI boundries by viewing the system
as a whole, he/she should encourage common code
development among all software development team members
to achieve maximum benefit.

c. Within the TISSS development team there was often
disincentive to communicate or to share common code
between different cost accounts. The cost account
leaders were responsible for managing cost and schedule
so were disinclined to assume additional responsibility
to code and test common code, especially if small changes
were needed to make the item more general than specific
for a particular CSCI. Common code responsibility should
be assigned when identified and budgets and schedules
adjusted accordingly.

d. Maximum code reuseability was not achieved in TISSS
because so much common code is scattered throughout the
system. In one particular case, for example, the
interfaces to VMS were implemented in several CSCIs, each
time in a slightly different manner. This situation
could have been avoided if a separate CSCI had been
defined for common code and utilities, so that a common
interface could have been enforced.

e. The CSCI team that developed the common code was
responsible for its documentation, while the CSCIs that
used the common code simply referenced the documentation.
The overall system documentation understandability could
have been enhanced by having all common code and
utilities in a separate CSCI, thereby collecting all
commoi. code documentation in one place.

5.2 COMMUNICATIONS

1. Communication on a large project such as TISSS is critical to
both cost and schedule. Electronic mail was the most
effective tool for quick dissemination of information to many
people. Without this tool, project success would have been
placed in jeopardy.

2. Communication between project management and the system
developers was critical to the success of the program. Not
only were internal reviews scheduled prior to major customer
meetings, but also at the start of each phase of the software
development. The objective was to review the plan in detail
and to make minor course corrections based on c stomer
direction and cost and schedule considerations. Weekly
meetings were held throughout the term of the project to
review progress against the plan and t correct any
deviations through a corrective actior r- overy plan. This
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bi-lateral communication channel provided early feedback to
management and gave the developers an appreciation of the
system as a whole.

3. Projectizing is defined as organizing all software project
personnel under one functional manager. This management
technique helped during the TISSS project by reducing
intra-group conflict between various managers who desired to
promote their own interests over those of the project.
Co-locating all team members improved not only the
communications but also, fostered a feeling of "esprit de
corps" toward the TISSS project.

4. Each phase of the development cycle should be started with a
kickoff meeting where such topics as the objectives of the
next phase, the methodology, the schedules and
responsibilities, etc., are stated. During Build 1, the
chief programmer met only with the Cost Account Leaders to
discuss these topics. This sometimes resulted in unclear
direction to the developers so in the Build 2 phase, the
entire TISSS team was invited to the kickoff meetings to
ensure uniformity. Meeting attendees should he made aware of
the importance of the information and minutes should be
quickly distributed to confirm conclusions.

5. A System Engineering mini-course was held by the Software
System Engineering Manager at the start of the requirements
definition phase of Build 2. This mini-course proved quite
helpful to engineers with diverse backgrounds by providing
the expectations and techniques necessary to perform system
engineering tasks.

6. The contractor's internal review teams for formal reviews
such as PDR and CDR proved largely ineffective with people
from outside the project. Mainly, the amount of time
necessary to familiarize themselves with the project was
insufficiently allocated. For complex projects such as
TISSS, reviewers should be limited in number and chosen from
people performing similiar work.

5.3 CONFIGURATION MANAGEMENT

1. Configuration Management (CM) should be established on a
large project early in the requirements definition phase in
order to develop CM procedures, to establish the CM account
and library structure, and to exercise control over the
documentation through Change Control Board (CCB) meetings.
After every major phase of the project, the developmental
documents should be baselined into the CM library. This
procedure proved to be very beneficial on TISSS as
documentation revisions were performed in a controlled way,
thus preserving the changes and allowing traceability to
previous versions.
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2. Configuration Management was able to operate with
inexpensive, non-integrated DEC tools such as the Ada
Compilation System (ACS) and the Code Management System
(CMS). Both tools performed very well and have actually been
improved since the start of the project. The CM computer
account contained over 70 different CMS libraries and 17 Ada
libraries, organized into a three-level hierarchy. In
addition, over 90 DCL command procedures were written to
automate the steps involved using these tools. The command
files provided a log of CM actions which were attached to the
Internal Software Delivery Form (ISDF) and reviewed by the
CCB. These command files were important for CM productivity,
throughput and repeatability. More integrated and capable CM
tools are available today that could make the CM job even
more productive.

3. The Configuration Management task was budgeted to support one
CM clerk full time for the TISSS development. This level
alone was insufficient for such a large Ada project.
Engineering expertise was required to establish the CM
library structure, to establish the ACS library structure,
and to coordinate the initial compile and link command
procedures. Engineering assistance was also needed to
develop other command procedures to automate the CM tasks.

4. Many of the compilation changes and the rebuilding of the CM
ACS libraries during developmental modifications were very
lengthy and were best performed during off-hours. This
approach allowed for better system resource utilization
during the day and avoided the problem of engineers working
with changing or obsolete libraries. The CM engineer should
be able to work late hours or have access to a remote
terminal at home since command procedures often require
checking, correcting, and/or restarting at odd hours to
assure successful completion.

5. CMS libraries should be named so their content and purpose
are obvious. The naming convention chosen for TISSS is clear
and easy to follow. Sometimes it was difficult for new
people coming on to the project or to those who were
unfamiliar with the CM library, to know where the files were
located. A chart showing the account structure was developed
mid-way through.the project to help those people. Perhaps an
updated formal release of the CM Procedures and Practices
Manual at this point would have been useful. The government
recognized the need for this information, so the account
structure was included in the Version Description Document
(VDD) delivered at the end of the project.

6. When changed documents were delivered to CM, it important
to quickly rebuild the documents into the proper utput
format (using Runoff) so that they could be p'- Lnto a
current copy directory accessible by everyone. In this way,
an up-to-date on-line copy of each document was always
available. Individuals could either print their o.n copy or
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review the document on-line. The entire team was notified of
document changes by electronic mail.

7. The Program Trouble Report (PTR) and Internal Software
Delivery Form (ISDF) provide the basic information required
by the Software CM plan to affect changes to the system. The
forms were revised at least twice during the TISSS project,
each time tailoring them with more project specific and
useful information. Initially, the forms were printed on
paper and filled out by hand. The latest versions were
stored electronically and edited on-line by the person
submitting the change. By using electronic forms, the
readability of the information was improved and led to a more
completely filled in form. A still better mechanism would be
to create a tool on top of a data base for storing the
PTR/ISDF information. This technique could provide better
facilities for tracking the status and closure of the PTRs.

8. Configuration Management difficulties seemed to be related to
the lack of understanding by the TISSS developers in proper
CM procedures and in fully completing the PTR and ISDF forms.
A more comprehensively written CM plan could have aided in
this understanding. As the procedures evolved, the CM plan
should have been revised to help the developers learn the
procedures. Often, the PTR and ISDF forms contained
insufficient information to completely describe the problem
or the solution. Sometimes only a portion of the PTR could
be closed by the ISDF, leaving the balance of the change
incomplete and causing difficulties with the tracking and
cross-referencing of PTR's in the CM filing system. A better
way would have been to close the PTR and issue a new but
similiar one with reduced scope. In this way the tracking
process would have been cleaner. Also, one ISDF was
sometimes used to deliver several files to CM and to close
several PTR's. While this was certainly a fast method of
closing PTR's, it became difficult to trace the effect of an
individual PTR at a later date. Therefore, the number of
PTR's closed by a single ISDF should be kept to a small
number, preferably only one per PTR. In order to make the CM
PTR/ISDF system fast and efficient, and to prepare CCB
agendas and status Leports, the system sh ld be automated as
much as possible with a data base centereu tool.

5.4 DID TAILORING

1, The Data Item Descriptions (DIDs) that were called out in the
TISSS Contract Data Requirements List (CDRL) were extracted
from the draft version of DOD-STD-SDS, dated 5 December 1983.
These DIDs were mostly based on using older languages such as
Fortran, and failed to address concepts that were used in
documenting an Ada design. The DID's were written very
generally to apply to all types of software programs and some
sections were not applicable to the type of software system
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being developed. For example, TISSS is a data base system
that is supported by tools and a user interface, not an
embedded system with several hardware interfaces and
stringent timing requirements. Thus, those sections in a DID
that dealt with interrupt handling and timing requirements
were unnecessary for TISSS.

2. DID tailoring is a mechanism to provide only the necessary
documentation for a system and to present it in the most
meaningful way. DID tailoring should be negotiated prior to
contract award, if possible. Some additional DID tailoring
may be identified throughout the development process. All
changes should be communicated to interested parties,
including the customer, the Program Office, any Independent
Validation and Verification (IV&V) organization(s), internal
Software Quality Assurance (SQA), Contracts, as well as the
software development team.

3. The updated MIL-STD-2167A, Defense System Software
Development, dated 29 February 1988, encourages tailoring of
the Data Item Descriptions (DID's) on a per contract basis.
The standard defines tailoring as the elimination of
non-applicable paragraphs or subparegraphs denoting the
deletion with a statement following the deleted paragraph
heading. For TISSS, DID tailoring was performed by the
software engineers in the preparation of the Software Top
Level Design Document (STLDD) and the Software Detailed
Design Document (SDDD) as well as other documents. The
customer was informed of DID variances as they were
discovered and he provided verbal direction with subsequent
written follow-up of the agreement. However, these
agreements were not always timely and SQA and IV&V
contractors were not always aware of their existence, and
many hours were unduly spent trying to explain and justify
DID variations to both groups. Early DID tailoring approval
prior to contract award would have avoided this time
consuming and inefficient process.

4. From the contractor's experience in working with MIL-STD-2167
on this project, it was beneficial to both the customer and
the contractor to include additional information in
subsections or appendices not called out by the 2167
standard. Also, it was advantageous to modify the content,
detail and format of the information required by certain
areas in the DIDs, consistent with the general direction of
the military standard.

5. Document contents and the physical preparation of the
documents should be automated as much as possible. Document
style/format should be exactly what is produced by a tool,
within adjustments provided by that tool, and by mutual
agreement between the customer and the contractor. The
productivity gained by using the tool in the first place is
diminished if the document requires postprocessing or editing
after tool output.
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6. The number of documents required by the military standard
will be reduced by keeping the number of CSCIs to a minimum.
Contractor developed software should be separated in the
static hierarchy from Commercial Off-the-Shelf software
(COTS) and Government Furnished Software (GFS). The design
and operation of COTS and GFS was undocumented by the
contractor since COTS and GFS were documented elsewhere.
However, the interfaces to COTS and GFS should be identified
and described in the Interface Design Document (IDD).

7. In order to fully utilize reuseable document fragments, they
should be contained in a single CMS library or have a single
copy of common parts. Thus, the same paragraph text may
efficiently be reused in several documents. For example, a
project Glossary may be developed and for easy reference,
appear in the Notes section of every document produced. When
additions or modifications are made to the Glossary, the
changes are made in one place and the automated regeneration
of documents quickly propagates the change throughout the
system.

8. A review of the style and expected content of each document
should be scheduled between the customer and the contractor
at the beginning of each stage for documents produced in that
stage. This approach would shorten review cycles and
minimize IV&V comments which criticize for style only.

9. In reference to the SDDD, Section 3.1.3, Memory and
Processing Allocation, if no time critical real-time
requirements or size restrictions exist, this section should
be tailored out since the information is very difficult and
costly to produce.

10. Again in the SDDD, automated tools should be used to derive
as much information as possible from the Ada PDL or code.
The information given on each input, output and local data
element will be its Ada type information and descriptive
comment. Information such as units, range of values,
precision/resolution, legality checks, data type and data
representation will not be explicitly listed since it can be
derived from the Ada type information.

11. For maintenance of large software systems developed by
others, it has been the contractor's experience that to
obtain an understanding of the software architecture and
operation, a graphical high level structure diagram was the
most useful aid. When specific problems arose, the code was
utilized directly, especially if it was well commented. The
PDL is rarely looked at and difficult to maintain. PDL,
however, is useful during design development when not all the
details are known and is included in the SDDD at CDR. But as
the system is implemented, the Ada PDL should be replaced in
the SDDD with Ada code.
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12. Design decisions and reasons for selection of alternatives
and/or approaches are included in the SDDD, Section 6, Notes.
Generally, software developers neglect to capture this
information but for better understanding during software
maintenance, this information is most useful and therefore
should be documented in this section.

13. Software User's Manual (SUM) - An appendix could be included
in the SUM that contains each menu screen or SQL Form that is
contained in the User Interface to the system. This data
would be very useful as a reference for the required
execution procedures and user input described in Section 3 of
the SUM.

14. Software Product Specification (SPS) - As the final version
of the SDDD contains the PDL that is the actual as-built
code,* it is unnecessary to include the actual code listings
in the SPS. Therefore, it is recommended that the SPS as a
program requirement be deleted since the data already exists
in the basic documents that make up the SPS.

5.5 DOCUMENTATION

1. Most of the difficulties with design documentation that
occurred in Build 1 were addressed and resolved in Build 2.
The Design Document Generator (DDG) tool developed
internally, generated the runoff file for the SDDD directly
from the PDL or code files along with a template file and
configuration file as inputs. This enabled the designers to
perform all their work within one file, the .ada file, which
was used first as a PDL file and then as a code file.
Functional descriptions of the unit were placed in the code
headers. The DDG tool placed the descriptions, inputs,
output, processing, etc. into the appropriate sections of
the document so no references to listings were required.
Also, the DDG calculated which units used other units and
which data items were global and where they were used.
During Build 1, this information for the SDDD was computed by
hand which may have led to an inconsistency and distrust for
the accuracy of the data. The standard program header was
changed to accommodate the DDG tool and the code template for
Ada files was made more sensible and automated.

2. Even though an object-orinted design approach may be used, it
was found that for TISSS the Yourdon diagram (with
conventions described in the SSPM appendix) served a useful
purpose. These diagrams illustrated the calling
relationships between units in a program and provided a high
level graphical view of the overall design. These diagrams
were also found to be very useful in maintenance tasks of
tracking down bugs or by making enhancements and should
therefore, be kept current with software changes in order to
continue their usefulness.
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3. In Build 2 of TISSS, it was beneficial to create templates
for the various configurations of Yourdon diagrams (i.e. two
boxes on a page; three boxes on a page; etc.). Thus, unlike
Build 1, all Yourdon diagrams were layed out consistently and
made much more readable. Templates also improved the
efficiency with which the engineers were able to create the
diagrams and the speed with which the clerks were able to
draw them on the Macintosh.

4. Yourdon diagrams should be automatically generated from the
Ada PDL/Source code. The code contains the actual Ada calls
and thus all of the information necessary for the Yourdon
diagrams. Automating this task would save both engineering
time to create the diagrams as well as clerk time to produce
them. A tool in conjunction with the Design Document
Generator (DDG) was created internally near the end of the
TISSS contract, that parsed the Ada code and printed the
resultant diagram on a laser printer using Latex. This tool
proved the feasibility of the concept and thus should be used
in future maintenance work.

5. Yourdon conventions for TISSS were developed during the
Design phase of Build 1. A few special cases arose during
that phase which caused the standards to be revisited and
added to as necessary. The resultant conventions were a bit
complex and one simplification was made in Build 2. The
asterisk beside a box t. indicate that the unit was
previously expanded was dropped.

6. TISSS documentation was completed with inadequate tools for
merging text and graphics within a document. VAX Runoff was
used for the text portions and the Macintosh used for
graphics figures. The graphics were manually coordinated and
"cut and pasted" by hand. There are more efficient
publication processing tools available today where graphics
can be merged with text within the same operating
environment.

7. The SDDD was made more understandable when it was organized
by Ada packages as was done during Build 2. Since Ada
packages were not addressed by MIL-STD-2167, the Ada packages
were included within an appendix for Build 1, not in the main
part of the SDDD document. The mistaken thinking at that
time was that the Ada packages were not really part of the
design but an after-the-fact grouping of units. It was
learned through experience that the Ada packages were the key
to the design and thus a natural for organization and
expression in the documentation.

8. Most documents developed on a project should contain an index
to some degree to aid the reader. Although the documentation
preparation tool used on TISSS (Runoff) provided the
capability to create an index, each individual occurrance of
a word that was to be referenced in the index had to be
marked with the appropriate Runoff command. Tools were
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created to enhance Runoff's indexing capability by creating
lists of words from the document and marking all occurrences
of designated words with index commands. It was found that
the Software User's Manual (SUM) and the Software Standards
and Procedures Manual (SSPM) needed the most comprehensive
indexes since these documents would be frequently used for
reference. For the Software Detailed Design Documents
(SDDD), it was found useful to index every CSC and unit and
also to cross-reference each unit with the package where the
unit was contained.

9. The creation of the Software User's Manual (SUM) and Computer
System Operator's Manual (CSOM) would have been an easier
task and of more use to the developers if these documents had
been prepared in parallel with the TISSS system instead of
after its completion.

10. The Program Trouble Reports (PTRs) against the requirements
documents should be completed soon after they occur because
these documents form the baseline for the test and
development teams. For TISSS, the requirements document
updates lagged behind the direction received by the
developers so the documents became ineffectual as a baseline.
Additional system engineering resources could have helped to
alleviate this difficulty.

5.6 LINES OF CODE (LOC)

1. The TISSS software development was managed by Lines of Code
(LOC). At each major software development milestone review,
LOC estimates were prepared and reported on, based upon the
latest knowledge of the system design. This gave managers
the visibility to see where LOCs were growing or to identify
potential out of scope features not specified by the
requirements documents. Paying attention to the LOC
estimates helped to ensure functionality compliant with the
requirements and provided a criteria for decision making when
evaluating alternatives. Sometimes a feature would be
selected that would require more manual steps on the part of
the user because it greatly reduced the LOC count. This
trade off analysis provided resources to enhance system
features, perhaps at the expense of user friendliness.

2. The technique of managing by LOCs had some difficulties that
were discovered through experience. Initially, there was
confusion on what constituted a line of code. It was agreed
that the Boehm standard for LOC counting would be used to
prepare LOC estimates. That is, each physical line,
excluding comments and blank lines, would count as an LOC.
Boehm LOC had been used as a contractor division standard in
previous projects and could thus be compared to TISSS for
equivalency. The LOC that was presented in the proposal and
BAFO was based not on the Boehm standard but on equivalent
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Fortran functionality. There was some effort spent trying to
resolve the equivalent mapping factor.

3. The second area of difficulty with LOC estimation was that
people on TISSS were unfamiliar with estimating LOC in Ada.
Some of the differences between estimating LOC for Ada vs
Pascal/FORTRAN 77 were:

- Procedure and Function declarations often had to be
repeated up to three times in Ada. Declaration may be
required for the Procedure itself, as well as the Package
Specification and Package Body.

- Strong typing in Ada required development of conversion
utilities. TISSS required about 4K LOC just for
conversion from one type to another. These LOCs were
very difficult to estimate early in the project.

- Package Specifications and Bodies should be
conceptualized very early, and LOC increased accordingly.

4. Software style standards have much influence on Boehm LOC
estimations (from 25% to 100%). Style standards must be well
understood when comparing projects and using project
productivity data for competitively bidding new work.

5. With experience gained with using Ada, the contractor has
improved his ability to use Boehm LOC estimating techniques.
One may still think in terms of "functions", but use a
multiplication factor to reach Boehm. The LOC estimates on
TISSS Build 2 were more accurate for the resulting
implementation based on the lessons learned from the Build 1
experience.

5.7 METHODS

1. The MIL-STD-2167 document known as Software Standards and
Procedures Manual (SSPM) was a critical document for defining
the methods and standards that the software developers were
to follow on TISSS. Initially, an SSPM was delivered with
the Phase II proposal. This was a very high level document
that was extremely insufficient for describing the procedures
necessary to perform the day-to-day software development work
on TISSS. The contract required no subsequent updates or
deliveries of the SSPM, but because it was such an important
document, the SSPM was expanded and enhanced during the
software development period for internal use.

2. The chief programmer and cost account leaders recognized
early on the need for adding to the SSPM and made
modifications. But since the group had no previous history
with Ada and MIL-STD-2167 projects, many of the standards and
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procedures were modified throughout the project as experience
was gained. The resulting SSPM is now the most comprehensive
standard used by any group at the contractor facility, yet it
still could be improved. In most cases, difficulties with
the SSPM were not discovered until one of the CSCIs reached a
point in its design where a particular standard had to be
applied. This resulted in many changes that in turn forced
existing work to be updated. Productivity and morale were
adversely impacted by such changes.

3. For future software development projects, it is imperative
for program control that the methodology and standards be
prototyped in the same manner as critical design areas. In
fact, the standards are probably more critical (in terms of
re-work needed) than for most design areas. This prototyping
of development standards implies that time, money, and
methodology expertise is available at the start of the
project. In the case of TISSS, there was no project
experience identified in the entire Sector for DOD-STD-SDS
(draft version of MIL-STD-2167) or for Ada development using
a government standard, much less a combination of the two.
It is hoped that the experience gained on TISSS can be used
profitably by others.

4. A key feature of the contractor software design methodology
was that compilable Ada PDL was used. This not only made the
transition from PDL to code very easy but it enabled the
interfaces to the solution entities to be compiled early in
the design process ensuring a concrete definition of the
interface and independent development of items on either side
of the interface.

5. At the completion of Build 1 of TISSS and before starting
Build 2, a major rework was performed on the SSPM to
incorporate lessons learned from Build 1. The code developed
under Build 1 was unchanged making it incompatible with the
new standard. Thus, there are two separate stand-alone SSPM
documents. Some of the key changes for the Build 2 SSPM were

- More emphasis was placed on the use of "Object Oriented"
design in both the preliminary and detailed design
phases.

- The definitions of TLCSC, LLCSC, Units and the static
hierarchy as it applied to the MIL-STD-2167 documentation
was clarified. LLCSC was changed to be an Ada package
instead of depending upon whether they called other
units.

- A tool called the Design Document Generator (DDG), was
developed to automatically generate the design documents
from the PDL or code files. The standard program header
was changed to accomodate the tool and the code template
for Ada files was made more sensible and automatsd.
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Procedures were changed to describe how software
engineers should design the PDL and code to produce the
best documentation with the tool.

Package qualification was required of all data used
within a unit that was not declared within that unit,
even if it was with;i the enclosing package. This
requirement was added for understandability as well as to
work better with the DDG tool.

Much more stringent file naming conventions were derived
for all files, not just source files but test plans, test
data, test drivers and stubs and test results were
included. These naming conventions were left to the
individual developers or work package leaders during
Build 1 and were thus, quite inconsistent across the
project.

6. The time required to become proficient in Ada is tremendous.
Each team member had, as a minimum, attended one (or more)
Ada classes. This level of training was much more detailed
and exhaustive than a normal in-house course, but did not
qualify a person to design in Ada. Until more experience was
obtained by the contractor, it was extremely risky to attempt
a project of the magnitude of TISSS without having many
experienced Ada experts on hand.

7. Data flow diagrams prepared during the requirements phase of
a software development program are very useful for the
understanding of the systenr, as long as these diagrams impose
no design entities or functions prior to the actual
preliminary design task.

8. A deficiency throughout the entire life cycle of the TISSS
project was in the handling of formal customer and informal
internal action items. Better mechanisms and procedures were
needed to clearly capture action items that stated the intent
of the initiator; better mechanisms were needed to track the
status of action items opened and closed; and better methods
were needed to complete and review the closure of action
items. Much effort was spent trying to "find" old action
items, track down incomplete action items and organize them
for reference and presentation. A decision criteria should
have been developed to evaluate the "worth" of completing
action items. Simply because someone requested an action
item, the effort to complete the task may not have been
justified. Several action items were generated and worked on
for TISSS which did nothing to contribute to any ongoing task
or related effort. These were often extraneous or just
interesting to someone. An investment needed to be made to
clarify action item procedures and to automate those
procedures and tracking with a database tool.
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9. Because the Postprocessor (AP) CSCI was a new technology area
in concept, an Operational Concepts Document (OCD) should
have been written for it during the requirements definition
phase, even before the Software Requirements Specification
(SRS) was prepared. This would have clarified its intended
purpose, enabled the customer and other experts to provide
early feedback and to have allowed the SRS requirements
document to be written with greater understanding.

5.8 METRICS

1. A major deficiency area during the TISSS development was
formulating guidelines for the type of metrics and how they
should be gathered and used to highlight problem areas for
improving productivity of the software development process.
The only metric that was gathered and measured where an
accurate history exists was the line-of-code count.

2. Whatever metrics are required for performance measurement, a
mechanism for entering data on-line and as it occurs should
be developed instead of recreating the information after the
fact from recall or from an incomplete history. Cost and
schedule data are very important for measuring productivity
and useful for accurately bidding future work. There was no
mechanism for organizing and periodically capturi.ng on-line
cost and schedule information for TISSS.

3. Sizing and timing estimates for performance tracking provided
useful information to guide design decisions. Sizing was
performed during preliminary design once the data structures
were developed. Tools were written to project the memory
required for different variations of the input data, allowing
the optimization of system performance. Timing measurements
were performed during the coding phase in order to tune
algorithms when performance deficiencies were uncovered.

5.9 PERSONNEL

1. One of the most important lessons learned on TISSS was the
criticality of an extremely effective design and
implementation team. The TISSS team consistently
accomplished whatever was asked of them, often going well
beyond what was expected. Similar challenging prjects
(tight budget and a fixed price contract) of implementing a
system with a new technology and non-specific high-level
requirements and reliance on inter-division expertise, demand
high performers at every level of the team.

2. System engineering support for both software development and
VHSIC test was insufficient for a project of this size.
Additional system engineering effort during the Requirements
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phase to more clearly state the requirements would have made
the job of the software developer easier. A full-time
software systems engin ;-er should have been assigned to manage
changes during the life cycle and to interpret the
requirements to ensure that the design, the code, and the
tests were compliant.

2. In order to avoid duplication of effort, job descriptions
should be prepared e:)y on to clarify responsibilities and
relationships. The diffezences between the functions of the
Chief Programmer and those of the Chief Engineer, for
example, shuuld iq well defined and clearly stated to achieve
high productivity and reduce areas tor conflict.

4. It was extremely effective to have the design team involved
during the Requirements phase. Not only were the designers
able to be productive quickly during the Design phase, they
had gained a better overall understanding of the system as a
whole, which led to more effective design decision making
later. Since the designers helped to write the TISSS'
requirements and at the same time, were aware that they could
be responsible for implemention, there was the additional
motivation to make the requirements understandable and
testable.

5. It was important to have the entire group within a subsystem
working on the top level design in order to enhance overall
design unde:standing. If the work was partitioned too early,
the exchange of top level design ideas would have been
stifled, thus limiting full understanding.

6. When a project is large enough, clerical support should
report to the Cost Account Leader inscead of being assigned
from a support r-'I. There were several instances during the
TISSS development when support personnel were temporarily
reassigned to other projects by their supervision, resulting
in an inefficient resourre allocation that required engineers
to perform data entry tasks. A cost account or CSCI that has
over a 15K lines-of-code budget should have a clerk assigned
Lull time.

7. [n retrospect, the clerical support budget for TISSS was
inadequate for the amount of documentation required by the
proiect Additional computer graphics operators, technical
writers and general data entry people could have been used to
support the enginecring developers. Also, a policy of
cross-training these people in all clerical task areas would
have allowed higher productivity. Project ranagement should
be aware that the lack of tc£ined clerical support on a
project of this size can be very demoralizing to the
engineering veveiopers working to meet a tight schedule.

8. w'-en assigning people to perform a small task, it was more
productive to make a full time assignment for a shorter time
than to assign a part time person for a longer period.
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5.10 PROTOTYPING

.. The prototyping which was performed during the various TISSS
design phases proved very beneficial. More protutyping was
performed than for most development programs, yet in
retrospect there were several areas where earlier prototyping
could have helped. Much of the prototyping was performed in
the Preliminary Design phase, which is generally earlier than
normal. However, extensive prototyping in the Requirements
Analysis phase would have been even better.

2. When a system uses embedded Commercial Off-The-Shelf (COTS)
software, early prototyping of the system interfaces should
be considered. This prototyping should have been completed
by the end of the TISSS requirements definition phase. Even
though some prototyping was performed for all TISSS embedded
COTS products, it was generally inadequate because often
these were the areas that caused most of the problems during
test.

3. In order to h.elp £:event changes in requirements during the
design phase, extensive prototyping is recommended for newly
developed tools and languages. The customer should be
involved in reviewing the prototype results to plan how the
knowledge gained can be used in the program structure.

4. All prototypes should be written in accordance with project
coding standards so that all or portions of the prototypes
can be assimilated into the final product.

5. The TISSS menus should have been designed and prototyped much
earlier in the project cycle. The menu structure was
completed well into the desiqn phase after Preliminary Design
Review. The Design Input menu prototype, for example, was
completed half way through detailed design. Menus should be
specified by Systems Engineering together with a software
developer to indicate feasibility and presented as a part of
the requirements. It would have been beneficial if the
customer and final end-user could have provided more user
specifir information during the requirements phase. Tools
are now available that allow rapid prototyping of user
interfaces and menus that could be utilized to facilitate
this task.

5.11 SCHEDULES

1. The execution of the TISSS Phase II program was planned for a
very tight schedule based on fiscal and c"stomer constraints.
Considering that a high-risk, new technology was to be
developed, program success and adherence to the sc[ dule was
attributed to establ.ishing a competent, dedicated. nd
success motivated development team.
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2. The utilization of detailed schedules, planned to daily
resolution, was an extremely effective management concept.
The schedules were manually statused and reviewed at least on
a weekly basis, more often when needed. Direction was
provided to the software developers through these daily
schedules which indicated what was expected of them and the
coordination with the overall plan. Automated tools to plan
and produce these schedules in a readable, statusable output
form would have helped increase cost account leader
productivity.

3. The idle period between the time material was prepared for a
review and the review itself was not allowed to be wasted.
Development activities were planned such that work was
started on tasks for the succeeding phase.

4. In preparing the detailed schedules, consideration should be
given to the establishment of milestones for intermediate and
internal reviews as well as for action item completion.

5. It was extremely difficult to perform two separate
development tasks in parallel with the same development team.
The Build 1 schedule for TISSS, for example, was overlapped
with the Build 2 schedule in order to maintain the overall
program schedule established at the outset of the program.
This turned out to be very inefficient since it was difficult
to complete the Build 1 tasks while trying to maintain the
Build 2 schedule. A better approach would have been to focus
on completing the Build 1 tasks before starting Build 2.

6. The schedule for Build 2 was even more compressed than the
Build 1 schedule. Adding headcount is not always an
effective solution to increased workload. Individual pieces
can be completed quickly but not necessarily integrated. The
coordination of the entire development task generally falls
onto a few people such as the cost account leaders, chief
programmer and chief systems engineer, causing them to be
extremely overworked. This region of diminishing returns
suggests an axiom. Dispite how badly its needed, the
schedule for high quality working software can be compressed
only so much.

5.12 TOOLS

1. The tools used for a project can have a tremendous impact on
productivity. The TISSS team developed tools for everything
from template generators to Software Development Folder (SDF)
creators. Literally hundreds of engineering hours were saved
by extensive tool development. However, because of cost and
schedule constraints, the TISSS tools tended to address the
less complicated support tasks.
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2. Consideration should be given during the proposal phase to
the importance of establishing a budget for commercial tool
purchases to aid in the software development process.
Generally, management pressure forces productivity cost
issues such as tool purchases to be cut because they are
either not well understood or are difficult to justify on
their own merit. Many engineers when faced with a large
task, would rather write a tool (command file or program) to
help them complete the task. It is far more efficient to
purchase an off-the-shelf product that satisfies a need
rather than developing it. Also, several times on the TISSS
project a similar tool was developed by more than one person
in parallel to solve a particular problem. This led to two
and sometimes three variatiuns of the same tool and a
duplication of effort. The chief programmer should surface
tool needs during the proposal phase and throughout the
project to identify the productivity issues to justify the
expenditure.

3. Improved productivity and efficiency should be a concern of
all project team members. The management procedures for a
chief programmer to obtain tools should not require an
inordinate amount of effort to be accepted by productivity
minded project management.

4. For projects similar to TISSS, a recommendation would be to
establish a separate budget for the Chief Programmer to use
for tool development. Similarly, the Chief Programmer should
be responsible for maintaining and expanding the tool set, as
well as ensuring that the tools developed have the broadest
practical application. The people who need the tool are the
most highly motivated to develop it, but in the case of a
larger tool, non-project help is needed. During the TISSS
negotiation phase, the tool budget was cut from the original
proposed budget, forcing a reduction in the scope of the
developed tools. An early identification of tool need may
have placed a higher priority on tool acquisition, resulting
in cost reductions in other areas. Another recommendation
would be to identify and fund a "tools guru" to consolidate
tool development in one place.

5. The Software Tracking System (SOFTRACS) and the Design
Document Generator (DDG) were two large tools partially
developed on program funds. Together, they have saved
hundreds of engineering manhours and have helped to enable
the project to be completed within cost and schedule. The
requirements for and the guidance in the development oi these
tools was provided by the chief programmer.
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6 STATISTICS ON COMPLETED TISSS PRODUCT

The TISSS project delivered many different documents and va:ious
forms of source and test code to its customer. This section
shows the size and categorization of those deliver bles as a
reference in comparison with other software projects.

6.1 Human Effort

The TISSS project as a total took over 200,000 person hours to
complete. A breakdown by labor category and phase is given in
Table 6.1.

TABLE 6.1 TISSS LABOR HOURS

LABOR CATEGORY CATEGORY NO. TOTAL

8078.13 (SEE NOTE)
MISCELLANEOUS 0000 10733.86 (SEE NOTE)
PRINC ENGINEER 010 36237.25
ASSO. PRIN ENGIN 012 21276.95
SR. ENGINEER 014 91329.65
ENGINEER 016 32 '4.75

SR TECH 022 144.00
TECHNICIAN 024 212.00

PROJ PLANNER 042 2518.65
PROJ CLERK 044 4317.27

DRAFTSMAN 062 9.00

TECH WRITER 072 2250.75
DOC SPECIALIST 074 4637.50
DOC CLERK 076 3172.15

INSPECTOR 082 2.00
E/M INSPECTOR 084 2.00
QUAL SPECIALIST 086 383.00

TOTAL 217348.91
NOTE:
THE HOURS INCURRED INCLUDE PEOPLE WHO WERE REQUIRED TO PERFORM

TISSS WORK AND HAD INDIRECT JOB CLASSIFICATION STATUS. EXAMPLES
OF THESE jB FUNCTIONS ARE: CONSULTANTS, INDIRECT S-CRETARIES

AND CLERKS, AND PROCUREMENT PEOPLE.
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6.2 Documentation Page Count

The following documents were printed and delivered to RADC for
TISSS. The CDRL number is shown for each document and well as
the number of pages in the document. The Final Report is not
included in the total page count.

TISSS Configuration Management Page Count

1 September 1988

CDRL Document Pages

A013 S/W Standards and Procedures 86
S/W Standards and Procedures (2) 112

A015 S/W Configuration Management Plan 21

B001 R&D Status Reports (27) 1070

B002 S/W Top Level Design Document 1189

UI 586
CP 32
DI 144
AU 83
OU 48
AP 80
AD 90
MI 126

B003 S/W Test Plan (AP) 202

B004 S/W User's Manual 273

B005 S/W Detailed Design Document 7569

UI Volume 1 402
UI Volume 2 440

CP Volume 1 107

DI Volume 1 338
DI Volume 2 648
DI Volume 3 333
DI Volume 4 628

AU Volume 1 263
AU Volume 2 439
AU Volume 3 373
AU Volume 4 221
AU Volume 5 232
AU Volume 6 279
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OU Volume 1 448

AP Volume 1 365
AP Volume 2 281
AP Volume 3 534
AP Volume 4 347

AD Volume 1 437
AD Volume 3 454
AD Volume 4 371
AD Volume 5 304

MI Volume 1 292
MI Volume 2 378
MI Volume 3 371
MI Volume 4 355
MI Volume 5 534

B006 Interface Design Document 106

B007 Data Base Design Document 58

B008 S/W Test Description 407

UI Volume 1 34
CP Volume 1 24
DI Volume 1 75
AU Volume 1 35
OU Volume 1 32
AP Volume 1 21
AD Volume 1 94
MI Volume 1 92

B010 S/W Test Procedure 3363

UI Volume 1 456
UI Volume 2 446
CP Volume 1 76
DI Volume 1 613
AU Volume 1 253
OU Volume 1 140
AP Volume 1 360
AD Volume 1 379
MI Volume 1 640

B011 S/W Test Report 437

UI Volume 1 71
CP Volume 1 12
DI Volume 1 66
AU Volume 1 64
OU Volume 1 63
AP Volume 1 13
AD Volume 1 76
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MI Volume 1 72

B013 Version Description Document 185

Version Description Document 68
Computer System's Installation Manual 117

B014 Computer System Operator's Manual 203

B015 S/W User's Manual 1374

Volume 1 374
Volume 2 482.
Volume 3 518

B018 Training Course Outline 29

B017 Quarterly Review 259

B021 Operational Concepts Document 242

B022 System Segment Specification 252

B023 S/W Requirements Spec 636

I 37
CP 17
DI 45
AU 42
ou 25
AP 161
AD 70
MI 239

B024 Interface Requirements Spec 256

B029 S/W Quality Assurance Plan 84

3031 Contract Funds Report 12

B032 Work Breakdown Structure 2

B033 Cost/Schedule Status Reports 304

B034 Published VTS Manual 138

B035 Reserved VTS Manual 59

B036 Published VTS 120

B037 Reserved VTS 158

Non-CDRL Documents:
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TDL Tool Box Description Specification 33

TVL Tool Box Description Specification 22

Government Operational Policy Considerations 73

Total 19,689

Figure 6.2-1 shows the relative size of the documents by category
and Figure 6.2-2 shows the information by individual documents
produced on TISSS.

REQUIREMENTS F 1386

DESIGN 8922

TEST 4409

OPERATIONAL 1762

0 2000 4000 6000 8000 10000

NUMBER OF PAGES

FIGURE 6.2-1 RELATIVE DOCUMENT SIZES BY CATEGORY
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FIGURE 6.2-2 RELATIVE DOCUMENT SIZES BY DOCUMENT

6.3 Deliverable Source Code

In order to create an operational TISSS system, various types of
source code were necessary. The most obvious was the Ada source
code which formed the executable programs which made up TISSS.There was 112,918 lines of code of Ada. (Note A line of code

is considered a physical line excluding blank lines and comment
lines.) There was also some use of VMS operating system features
which required 4,453 lines of DEC Command Language (DCL) to b6

S delivered with the, system. DCL (4,453) represents a small
percentage (3.7%) of the total source (119,444) in the attempt to
minimize the dependency of the operational system on the host
environment. In order to use the Oracle data base, 952 lines of
Structured Query Language (SQL) was written. Finally in order to
define the user interface menus and mechanisms to get the user
input data into the software, 22,391 lines of TDMS source was
written along with 10,359 of menu help text. (Reference Figures
6.3-1, 6.3-2, 6.3-3 and 6.3.4 for details).
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SOURCE FRMALTE

ADA QM SOL AQA C S2L ADA M SOL

AD 18791 1047 273 26038 49661 1538 1990 11395 519

AP 19562 0 0 12535 1018 0 15 8740 0

AU 16327 0 0 6892 2070 0 2334 6494 0

CP 740 0 0 848 300 0 14 1296 0

DI 23638 0 0 22176 2054 0 2033 5277 0

MI 17800 0 0 23221 1441 0 1138 17187 0

OU 4903 0 0 2997 675 0 641 2460 0

Ui 11157 456 0 3895 347 0 1466 1243 0

SYSTEM 0 2950 679 0 1108 0 0 2285 46

TOTAL 112,918 4453 952 98,602 59,174 1538 9,631 56407 565

FIGURE 6.3-3 TISSS LOC - SOURCE VS TEST

TOMS HELP 10359

TDMS RECORDS 1786

TDMS REQUESTS 4S10

MENUS 15695

32750

FIGURE 6.3-4 TISSS LOC - TDMS AND MENU FILES
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6.4 Test Code

In order to test a software system to the level required for
field operation, many software drivers and stubs had to be
written in order to perform unit testing, package testing, TLCSC
integration and finally CSCI testing at the formal level.
Informal testing which is done at the CSCI level and below caused
98,602 lines of Ada code to be written for this purpose. Formal
test which was performed at a CSCI level required 9,631 lines of
Ada code to be developed to isolate the CSCI boundaries. So it
can be observed that 108,233 LOC were written to test 114,039 LOC
or 94.9%.

The testing activity was automated as much as possible by using
DCL command files for setting up the data and the environment,
compiling, linking and simulating user input. 55,837 LOC DCL
command files were written for informal test and 56,407 LOC DCL
command files were written for formal test. This total, 112,244
compared to 108,233 LOC Ada (103.7 %) shows a high degree of
automation. By referencing Figure 6.3-2, it is also seen that
2,103 LOC SQL was written in the test effort.

6.5 Commenting

Figures 6.5-1, 6.5-2 and 6.5-3 shows the comparison of lines of
comments associated with the lines of code for each CSCI for
deliverable source, informal test and formal test code
respectively. The amount of commenting corresponds appropriately
to the visibility and usage of each type of code. Deliverable
source code which will be maintained with the system throughout
its lifetime should be well documented and explained. This is
shown by 180,930 line of comments for 114,039 lines of Ada or
158.6%.



CLO COMMENTS

AD 17644 38921

AP 19562 28138

AU 16327 29534

CP 740 1120

DI 23638 32370

MI 17800 28142

OU 4903 6918

UI 11157 15309

SYSTEM (AD) 1147 478

TOTAL 112,918 180,930

FIGURE 6.5-1 TISSS LINES OF CODE - SOURCE ADA

AD 26038 9444

AP 12535 9040

AU 6b92 1356

CP 848 1005

DI 22176 4312

Mi 23221 8135

OU 2997 2450

UI 3895 2270

TOTAL 98,602 38,012

FIGURE 6..-2 TISSS LOC INFORMAL TEST SOFTWARE
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AD 1990 653
AP 15 1
At) 2334 401
CP 14 0
D1 2033 2534
MI 1138 1678
OU 641 754
Ut 1466 1262

TOTAL 9,631 7,283

FIGURE 6.5-3 TISSS LOC -FORMAL TEST SOFTWARE
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7 PUBLICATIONS PRODUCED

The following publications and presentation were produced as a
result of activities performed on the TISSS project.

1. Ardito, M. and Donnells, G., "Using ORACLE to Implement a
Hybrid Data Base", ORACLE International Users Group
Conference, Washington, D. C., September, 1987

2. Freeberg, T., "Ada and DOD-STD-2167: Experience on a 100K
Line of Code Project", AIAA Computers in Aerospace
Conference, October 1987.

3. McCoy, L. S., "Interfacing Ada and Relational Databases",
Ada LETTERS, ACM SIGAda, Volume VII, Number 3, May/June 1987

4. McCoy, L. S., "Interfacing Ada and Relational Databases",
Proceedings of the 1987 Oracle International User Week

5. Rolfe, R. M., Tester Independent Support Software System,
Panel Session, International Test Conference, Washington,
D.C., Sept. 1988.

6. Rolfe, R. M., Tester Independent Support Software System,.
for MIL- M-38510 Microcircuit Qualification, VHSIC
Qualification Conference, Colorado Springs, Aug. 1987.

7. Rolfe, R. M., Lehtonen, D., et al, TISSS in the CALS
(Computer Aided Logistics- Support Environment, Annual
Reliability and Maintainability Symposium, Philadelphia, Jan,
1987.

8. Rolfe, R. M., Tester Independent Support Software System,
International Conference on ATE, Best of International Test
Conference Session, invited Paper, Paris, September 1986.

9. Rolfe, R. M., Tester Independent Support Software System, a
User's View, VHSIC Qualification Workshop, Vail, Sept. 1986.

10. Rolfe, R. M., Hardware Independent Test Data Standards,
Proceedings Computer Standards Conference, San Francisco, May
1986.

11. Rolfe, R. M., Tester Independent Support Software System,
Proceedings of IEEE Test Conference, Philadelphia, Oct, 1985.
(selected in best five papers of conference).

8 GOVERNMENT PATENT

A patent proposal covering the design concepts of the TISSS AMTE
Postprocessor was submitted to Rome Air Development Center
(RADC). A copy of the patent proposal is given in Appendix D.
RADC will submit a patent application.
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9 TISSS INSERTION RECOMMENDATIONS

TISSS has been built, now it must be used. The following
paragraphs cite recommendations or disclose plans to ease
acceptance by the community of potential users.

9.1 Upgrade To Current Versions Of Embedded Software

The developed TISSS runs under on VAX VMS 4.5, which has been
superseded by VMS 5.0. The TISSS is planned to be upgraded to
run under the new operating system. This implies an upgrade of
all embedded COTS tools. These include DEC software,
specifically TDMS and Runcff, and third-party software, including

Oracle, Palette, HILO, and HITS (note that HITS is owned by the
Navy).

9.2 Upgrade To IEEE 1076

TISSS currently uses VHDL 7.2 for models and test vectors. The
TISSS should be upgraded to the standard version of VHDL,
IEEE 1076. Thereafter, the modeling subsystem of the TISSS
should be upgraded to IEEE 1076 compatibility.

9.3 Upgrade TVL

The TISSS Test Vector Language (TVL) is planned to be upgraded
from VHDL 7.2 to IEEE 1076 as part of the previous
recommendation. In addition, numerous enhancements have been
identified that will make TVL acceptable. to a wider range of
users and will therefore expedite the process of converting TVL
into an industry standard. These enhancements are described
under the Future Directions section.

9.4 Additional Test Philosophies

TISSS was delivered with a test philosophy for LSTTL technology
microcircuits. Additional test philosophies should be developed,
targeted for VHSIC-level technologies. At a minimum, a CMOS test
philosophy would be required. New test macros may also be
defined, to augment the current set. By providing test
philosophies, standards and conventions are established, and new
TISSS sites can immediately begin generating test specifications.

9.5 Beta Sites

A number of TISSS beta sites have been identified. Five
government locations have been selected as beta sites, DESC,
SA-ALC, SM-ALC, WR-ALC, and JPL. In addition, a number of
potential industry beta sites within the US have volunteered,
although final selections have not been made. There is also
interest from foreign industry, especially from the French
embassy, However TISSS is governed by ITAR restrictions so the
code cannot be shipped to overseas users as yet.

The beta site effort is scheduled to last eight months, followed
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by a three month evaluation period. Beta sites will receive
training and technical support. Problems identified during this
period will be considered by the TISSS Configuration Control
Board, which will evaluate the problems and prioritize suggested
enhancements and corrections.

9.6 Data Availability

To facilitate acceptance of TISSS and the development of more
tools, complete documentation sets are planned to be made
available by the Government. In addition, the source code for
the developed CAD Postprocessor and AMTE Postprocessor will be
made available. The source code for the other TISSS subsystems
will generally be unavailable to prevent the development of
nonstandard TISSS systems.

A number of tools were developed under the TISSS program. These
tools will be made available as well, with source code and
limited documentation.

9.7 Postprocessors

The development of additional AMTE Postprocessors is a very
important part of the TISSS insertion process. Without an AMTE
Postprocessor, a TISSS site can generate MIL-Specs but cannot
generate a test program to actually test devices. Such a TISSS
site will be unable to realize the cost savings of automatic test
program generation. TISSS currently provides an AMTE
Postprocessor for the GenRad GR-18. Two additional
postprocessors are planned, one of which will be developed by
RADC and one which will be openly procured. These will be
targeted towards AMTE/ATE in use by the Government.

9.8 DLA/SPO Coordination

TISSS has received the endorsement of the CALS program office and
has been included in MIL-STD-454, Requirement 64, dated 22
September 1988. TISSS is being evaluated for the ATF program,
and a board level extension to TISSS, called LRM TISSS, has
received strong support from the ATF program. TISSS is also
being used for the GVSC program, contractors, meeting the
requirement that test information be provided to RADC in TISSS
compatible format.

9.9 Insertion Issues From The TISSS Industry Review

A number of issues were raised at the TISSS Industry Review held
June 22,23 1988. These issues become action items to be
addressed by the Government insertion plan.



9.9.1 How To Achieve Effective TISSS Buy-in By Merchant IC
Houses

How can the government effectively get merchant semiconductor
buy-in to the use of the TISSS and its input formats?

Initial Response: Most merchant IC vendors are very concerned
about disclosure of detailed gate level models of their standard
product to the Government or any other customer. These standard
products represent major R & D investment for these vendors. A
new microprocessor development can exceed $50,000,000. With this
kind of investment in intellectual property it is easily
understood why there is concern. The entire investment can be
transported on one or more TIF tapes as depicted in Figure 9.9.1,
the Complete TISSS Input Format (TIF). Various users need
subsets of information from the complete TIF. We will describe
some of the necessary data transfer subsets in this response.

9.9.2 TISSS Usage In Plant

Major merchant IC vendors at the TISSS Industry Review Meeting
indicated that they would be very willing to host TISSS at their
plants for those products to be qualified for DoD usage. They
would distribute the Test Only TISSS Output Format (TOF) data
shown in Figure 9.9.2 to meet the data needs of the OEM and
Government for product support. The data sets depicted in Figure
9.9.2 with shaded fill are not provided on the TOF. This Test
Only TOF is created by appropriate TIF/TOF flag setting for each
data set associated with the device/version stored in the TISSS
data base. All logical models, schematic, layout, total fault
dictionary, and device interface SRUs would be marked TIF only.

9.9.3 Standard Product Integrated Circuits (IC)

Merchant semiconductor vendors will want to provide the OEM user
of their standard components adequate information to reliably use
their components during OEM product development. In addition to
the Test Only TOF, additional information found in the Design
Requirements TIF is necessary to support many system
applications. This necessary information has been indicated to
be product and test specificaticn data and adequate simulatable
models to allow integration of these standard components into
custom OEM equipment. The minimum information for this data
transfer is described in Figure 9.9.3, the Design Requirements
TISSS Input Format (TIF).

The Government Qualifying activity or representative would come
to the merchant semiconductor plant to audit the complete TISSS
microcircuit description. The merchant semiconductor would
retain in house the Complete TIF as depicted in Figure 9.9.1 for
standard products.
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9.9.4 Application Specific Integrated Circuits (ASIC)

For application specific products of any type, the minimum TIF to
be provided to the semiconductor manufacture by the OEM product
developer is depicted in Figure 9.9.4, the Design Requirements
TIF. For this particular TIF type , the shaded items are those
items not required to specify a design requirement. The shaded
items include structural information consisting of schematic,
layout, total fault dictionary, and all models except required
behavior models. Of course all of the portable test vectors sets
are provided for the required behavior.

9.9.5 Form, Fit, And Function And BIT Or BIST

Structural test vector sets are not necessarily part of the
design requirements for an ASIC product. This is a very
important issue for some kinds of built in test (BIT) or built in
self test (BIST) microcircuit devices. Form, fit and function
replacement circuits may require the same BIT or BIST response.
Unfortunately, BIT and BIST responses often includes tests of
device structural integrity. Advanced VHSIC Phase II circuitry
might include an "I'm Okay signature" on the Element Test and
Maintenance Bus (ETM) which 4s independent of structure used to
implement a device to a specific design requirement. In any
case, if structural BIT or BIST signatures are part of the design
requirement, the behavioral test vector sets should verify the
BIT or BIST design requirements. Further, the behavioral models
must be bised upon the required structural architecture to
provide the correct BIT or BIST structural signatures or
response.

9.9.6 A Special Case For ASICs

There are some ASIC devices (e.g. simple gate arrays) which may
be remanufacturable without the layout description. However,
these devices must be based on de-facto standard cells and layout
rules. Unfortunately, these standard cells and layout rules
change typically within a few years.

In this case, only the data from the design requirements TIF will
be necessary for archive, because remanufacturing will almost
always include some redesign activity (minimally design
verification), even if highly automated. If the gate level
design is part of the design requirement, then a gate level model
should be provided as one of the behavioral models.
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9.9.7 Where Is The Complete TIF ?

The manufacturer of the ASIC circuit will maintain the complete
TIF description for each component. This TIF description would
be available to the Government Qualifying activity or
representative to audit compliance with contract data storage
requirements for TISSS microcircuit descriptions.

It is advisable to have a complete TIF description including
manufacturing process identification archived somewhere.
However, this archive may depend on the contractual agreements.
For individually qualified microcircuits which are proprietary,
the data can be stored with the qualifying vendor. However,
contractual protection will be required to assure availability
over the long military life cycles.

9.9.8 Update SUM Version Information For COTS

Update the Software User's Manual to provide sufficient
information to allow a user to order Commercial of the Shelf
Software (COTS) necessary for the TISSS operation without
technical support.

Initial Response: AS part of the Beta site support activity, the
SUM should be updated as necessary with a better description of
the COTS within the TISSS. For each COTS item the following
should be provided:

a. The COTS manufacturer's product name for ordering purposes.

b. A brief product description.

c. A description of the product's application to TISSS functions
and missions.

The Version Description Document (VDD) should be updated to
provide the current COTS product description and version number
necessary for procurement for each TISSS release.

It is anticipated that future TISSS releases will incorporate the
latest release of COTS products to maintain the high quality
level of support that the TISSS user will expect.

9.9.9 Update SUM Hardware Description Information For Laser
Printers

SUM hardware description does not include a DEC LN03 laser
printer for specification generation.

As part of the Beta site support activity, update the SUM minimum
hardware requirements to reflect hardware requirements for
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hosting the complete TISSS.

9.10 TISSS Test Philosophy Minimum Test Set/Additional Tests

The customer has raised the following concern as one that the
TISSS system should accommodate. "Generic test requirements can
be defined as the minimum set of requirements that must be
performed on a particular device class/technology. The ability
to add additional tests for an individual device directly into
the TEST PLAN.BLD from the available test macro skeletons must
exist. This will allow a TISSS user the ability to add
additional tests that may be appr3priate for an individual device
and not required by other devices in the same associated
class/technology. This assumes that the device is appropriate
for the class/technology and does not constitute the creation of
a new class/technology."

The TISSS system as implemented in version 1.0 does fully allow
the scenario described above. The Test Philosophy (also known as
pseudo device) identified by a class and technology in the TISSS
data base provides the minimum set of test requirements that must
be performed on all devices of a particular class/technology.
When a device of that class/technology is created the pseudo
device Test Philosophy is copied as a SRU group part of the newly
created device/version. (Reference section VII.3.3 of the TISSS
Software User's Manual on TISSS Conceptual Models). The Test
Plan Build SRU that is part of a device/version is only checked
against the Test Plan Requirement that is in the Test Philosophy
group that is also in the same device/version. It is not checked
against the Test Philosophy pseudo device.

When additional tests are appropriate for an individual device
but not required by other devices in the same class/technology, a
new version of the pseudo device should be created using the
9.4.1 Copy Test Philosophy menu. it is recommended that the
version name (4 characters) be an abbreviation of the device
requiring the variation of the minimal Test Philosophy. A
suggested version name for the minimal Test Philosophy pseudo
device is BASE.

The additional tests may then be added to the new version of the
pseudo device using the 9.3 Modify Test Philosophy SRUs menu.
Then the revised test philosophy can be copied into the Test
Philosophy group of the device requiring additional tests by
using the 2.4 Copy SRU Group menu. The auditing functions will
ensure that the test plan developed for this device includes all
additional tests.

when a device is submitted for aualification, the associated Test
Philosophy SRUs should be extracted from the device description
and compared using a basic Difference too! to the approved Test
Philosophy for the Class/Technology. If the differences indicate
additional tests were added but no changes were made to the
minimum test philosophy and if these additional tests are
acceptable to the qualifying agency, the device should be
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approved.

By use of the Test Philosophy library features of TISSS, the user
can add augmented test philosophies for each device and provide a
special library version as needed. Each device carries its own
unique test philosophy. All interactive and batch audits are
based on the device test philosophy. Specifically modified test
philosophy versions may be compared to the minimal base version.



10 CONCLUSIONS AND RECOMMENDATIONS - TISSS FUTURE DIRECTION

10.1 Modeling - Hardware Accelerator

One area of TISSS that need5 expansion is the Modeling Subsystem.
Currently no true value simulation capability is available. The
fault simulation and ATPG capabilities are limited by tne
simulation environments integrated into TISSS. The question then
has to be asked of why fault simulators were incorporated?

The purpose was to prove a device met fault coverage
requirements. This may be easy enough to prove with the embedded
TISSS simulators if all device were basic combinational logic.
This is never the case. Design for testability techniques and
built in test structures make proving fault grade more
complicated.

The approach of fault simulating within TISSS is only feasible
for certain, types of integrated circuits. The translation
process that must occur from VHDL to another modeling language
limits the true representation of components on the IC. In
hindsight, concentration should of been focused on an audit
procedure that accepted fault simulation reports. These reports
would include fault detection data as well as built-in-test
signature analysis. The audit procedure would verify that all
nodes were tested and calculate an overall fault coverage for the
entire device. Any further validation of fault coverage would be
performed on site at the IC manufacturer.

True value simulation is a good way to prove design intent. The
VHDL simulator should become a part of TISSS. It could be
integrated or accessed through files in and out of TISSS. Due to
the complexity of VHSIC and the future requirements for LRMs, a
hardware accelerator should be evaluated.

There is currently a task under TISSS Insertion to evaluate the
ZYCAD Mach 1000. Input to the accelerator is VHDL structural
representations. Any VHDL limitation needs to be evaluated and
documented. The simulation report function will be examined to
determine pertinent information that could be extracted for
TISSS.

The future of Modeling depends heavily on further development
with VHDL. Work needs to progress to develop more components in
the TISSS standard VHIL library. A basic set of primitives was
defined for TISSS that could easily map between HITS and HILO-2.
This basic set needs to be enhanced as more and more VHDL designs
become available. Modeling techniques need to be explored for
expressing bottom up and global timing, analog representations,
and technology specifications at a primitive level. A library of
acceptable models should be maintained. As VHDL becomes more
prevalent, higher level functions should be included. Ideally,
the library should grow to contain descriptions of behavioral
representations of commonly implemented and also complex
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functions of VLSI components. This includes design for
testability techniques and built-in-test structures.

Through TISSS, Harris was able to develop and define interfaces
and architectural body formats. More importantly, interfaces to
the VHDL test bench required for simulation were defined. One
major accomplishment was the signal generator whose definition
provided an interface for TVL, the TISSS test vector language.
The effort of standardizing VHDL interfaces to the test bench
need to continue. Once a standard for TVL is established a
standard signal generator could be developed. This would help
users in the VHDL environment understand TVL and aid them in the
simulation process.

For the future, it is important for the VHDL simulator to become
a part of TISSS. Either fully integrated or accessed through
files in and out of TISSS. The current VHDL library needs to be
expanded to express multiple functions including design for
testability techniques and built-in-test. A hardware accelerator
would make simulation much more feasible on large circuits.
Standards in fault simulation report formats need to commence.
Each step aids in the progress of developing a unified VHDL
design and test environment.

10.2 Test Specification (TDL) And Description (TVL)

The interface to the TISSS system is defined by the TISSS Input
Format TIF. A number of languages are defined within TIF,
including the Test Description Language (TDL) and the Test Vector
Language (TVL). TVL will be upgraded as part of the TISSS
insertion plan. TDL may be upgraded as part of the LRM TISSS
program. This section briefly describes some desirable
enhancements to these languages.

10.2.1 Test Description Language (TDL)

The Test Description Language (TDL) is used to express test
requirements and test specifications. Extensions include
language standardization, syntax extensions, additional semantic
rules, and conventions for language use.

10.2.1.1 Language Standardization

TDL was developed as part of the TISSS program, and conforms to
no existing industry standard, although it resembles Ada and
VHDL. It would be beneficial to either migrate TDL to an
existing standard, such as IEEE 1076 (VHDL) or EDIF, or to
promote TDL as a standard in itself. In the process of
standardization it will be important to avoid making the language
too complex. A simpler representation that still meets the
objectives of the language will be more easily supported by new
tools.
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10.2.1.2 Additional Test Macro Types

The following changes to the pre-defined test macro types are
recommended.

a. Eliminate inconsistencies between the pre-defined TDL types
used in the test plan requirement and the corresponding types
used in the test plan build. In some cases the field names
of records do not agree, in other cases, the requirement type
does not provide enough defaults for the build type.

b. Express the accuracy (allowable error) of a physical val'e
with a percentage and a minimum, rather than as a single
value. This supports meaningful defaults for accuracies as
well as audits of accuracies.

c. Provide array parameters in test macros, which allow a test
engineer to specify a list of values, rather than a single
value.

d. Alter TDL in response to modifications of the Test Vector
Language (TVL). For example, if TVL supports labels, then
TDL should allow vectors to be referenced by label as well as
by vector number.

e. Eventually, TISSS should be extended to handle hybrid and
analog devices in addition to digital devices. Such devices
can be handled within TDL with the addition of new parameter
types. For example, a parameter type might be required that
described a tone burst for communications devices.

10.2.1.3 Additional Semantic Rules

Certain portions of a test description are currently validated
manually. Additional rules should be defined to further automat:
the audit process. Some rules will require additional TDL
structures while some will only require changes to the language
semantics and tools.

a. Rules dealing with the specification and use of the setup
conditions table should be expanded.

b. Rules dependent on the interaction between test macro
parameters (eg, pinset A must be a subset of pinset B) should
be implemented.

c. An extensible rule system should be investigated, in which a
newly developed test macro may contain previously undefined
rules, perhaps expressed in a language such as Prolog or
LISP.

All new rules should be evaluated to ensure that they are not
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overly restrictive.

10.2.1.4 Object Names

A consistent naming procedure should be established that allows a
direct reference into te.z description tables. This naming
procedure would be used consistently by all TISSS tools,
including report generators, AMTE Postprocessors, ard design
input tools. The naming procedure should take advantage of the
hierarchy of TDL.

10.2.1.5 Audit Exceptions

An automated exception acceptance technique could be implemented
which records individual errors detected by an audit of a test
specification, and suppresses those errors from further audit
reports. Along with the errors to be ignored, the database would
record the auditor authorizing the exception, the date
authorized, and other configuration management data. With
respect to TDL, this implies a standardization of error reporting
and a means of associating errors with individual TDL objects.

10.2.2 Detail Specification Requirement/Build

Although not a formal part of TDL, the languages used to express
the Detail Specification Requirement (DSR) and the Detail
Specification Build (DSB) could be enhanced to take advantage of
advanced document production technology. TISSS currently uses
DEC Runoff for document production. An upgrade to more
sophisticated document production software would support variable
width fonts, subscripts and superscripts, automatic figure and
table numbering, and automatic figure insertion. A change from
DEC Runoff would also eliminate any potential difficulty that
might arise when migrating TISSS to a different operating system,
such as Unix.

If more sophisticated typesetting capability is provided,
procedures for using, say, subscripts and superscripts within
test macro symbols should be established. This will allow tables
to be generated that more closely resemble current formats.

The syntax of the DSB could be simplified to reduce the cost of
support tools. Restrictions on SRU references could be removed,
allowing a test engineer to specify text or graphics information
for the Detail Specification as desired.

A powerful tool would be the provision of user-definable table
formats. This capability could be provided with the same
technology used in the TISSS AMTE Postprocessor. It would allow
individual sites to produce tailored reports for internal use,
and official MIL-Spec reports for government use. A related
capability would be product specifications that are independent
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of the MIL-M-38510.

10.2.3 Test Vector Language (TVL)

Plans exist to upgrade and enhance the current TVL. The intent
of these enhancements is to reduce the storage size of test
vector sets, to support structured (hierarchical) test vector
sets, and to support Built-In Test (BIT) and Built-In Self Test
(BIST). Additional future directions include a library of
standard hardware interfaces and support for analog test.

Existing plans call for three levels of TVL. The first level is
a simple representation with features that allow data compaction.
This TVL will be easily processed to generate a flat vector set.
The second level supports hierarchical test vector sets.
Procedures would be defined that could be called from the main
vector set. However the vector set could still be expanded to a
flat level-i vector set. The third level includes conditional
vector sets (for dealing with asynchronous outputs) and the
ability to use VHDL behavioral models to generate test vectors.
In general, a level-3 TVL will require a VHDL simulator for
expansion, and the vector set will not necessarily be
translatable to a level-2 or level-i representation.

A hierarchical TVL, as currently envisioned, will support
standard protocols. If a device is to interface with a PI bus,
for example, a test vector set will have a procedure that takes a
binary word as input and generates the necessary set of vectors
required to write that word on the bus. A similar procedure
would be written to read a word from the bus. Eventually,
standard procedures will be defined and collected in a library.
This simplifies vector sets while eliminating the possibility of
error in specifying the interface.

To support analog testing, digital test vectors may have to be
coordinated with analog signals such as voltage ramps or tone
bursts. This coordination could be handled from within the
vector set. For example, each test vector could contain the
voltage required for the ramp, or two frequency values specifying
the two tones in a tone burst.

10.3 Component And Board Level

The next logical step for TISSS is to extend the concept to the
board and LRM level. This extension requires additional
information stored in the database as well as additional database
relationships.

Additional data required includes physical information,
diagnostic information, and embedded software. Physical
information is needed to describe the dimensions of the LRM and
locations of connectors and internal circuit nodes. Diagnostic
information is needed to locate faults within the LRM, for
ultimate repair. (A major difference between components and LRMs
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is that LRMs are repairable while components are not.) Diagnostic
information would include guided probe data as well as
information about BIT/BIST within the module. Also, since many
LRMs have embedded software which affects the functionality of
the LRM, this software must also be stored in the database.

The database must be extended to support the sometimes complex
revision and version status of LRMs. For instance, two LRMs
might differ only in the embedded software, and this distinction
must be captured. The database must also allow reuse of
previously entered data, so that LRM test specifications can make
use of component test specifications.

10.4 Database And Tool Extensions

The most important part of TISSS is the standard TIF interface.
Any organization that can generate a TIF supports TISSS, whether
or not that organization uses any developed TISSS tools.
However, most organizations that wish to use TISSS will first
look to existing tools. This section lists enhancements that
would make the TISSS database a more attractive tool.

a. Rehost to Unix.

b. Provide a network interface to the database.

c. Provide a secure interface to the database at the operating
system level, to allow tools to be built from command
procedures.

d. Support compression of data stored in the-database,
especially for large vector sets.

e. Provide separate read/write access for each SRU in the
database, based on user ID or membership within some group.

f. Allow a test description to be audited against a test
philosophy in a pseudodevice.

g. Support common directory/file operations such as delete and
rename for devices, versions, and SRUs.

h. Support default SRU classes, names, and attributes.

i. Establish procedures and conventions for storing tester
specific information within the TISSS database. Example
tester specific data include fixture configuration files and
test results (datalog output).
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APPENDIX A

FINAL TISSS STATEMENT OF WORK

TISSS SOW Task (4.1)

(Phase I) The contractor shall:

TISSS SOW Task (4.1.1)

Review, as a minimum, the work described in Appendix 1, "Pertinent Research
Topics," and shall summarize each and report on its applicability to a
TISSS (see CDRL).

TISSS SOW Task (4.1.2)

Investigate the possibility of using existing software packages and test
languages so that the cost of the system may be minimized. As a minimum,
evaluate the software packages and language listed in Appendix 2,
"Available Software packages," and report on their status, availability,
ownership, cost, operation, and potential for use in the TISSS (see CDRL).

TISSS SOW Task (4.1.3)

Design a TISSS, using the results of the tasks described in paragraphs
4.1.1 and 4.1.2 and using Appendix 3, TISSS System Description and Design
Goal", as information and as a design goal. The contractor shall advise
the contracting officer of any deviations from Appendix 3. The TISSS
design and program plan shall be in accordance with Attachment No. 1. The
contractor shall consider suggestions made by the Government at the
Preliminary Specification Review (PSR), see paragraph 1.3.2.

TISSS SOW Task (4.1.4)

Evaluate hardware selection and software language selecti:in during the
design phase. Evaluate such factors as user friendlines., the desirability
of software transportability, the types and specifications of the host
computers required for the development and operation tasks, and the
selection of higher order languages such as Pascal or Ada, as well as their
run-time libraries, including restricted subsets of languages that would be
truly machine independent. Evaluate the feasibility of using only the
features of a language that are supported in Ada so that a conversion to
Ada would be possible in the future. Evaluate the Government's computing
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capabilities as described in Appendix 4, "Computing Facilities," to
determine any potential host capabilities for system development and
operation. Submit an analysis of the various h&r4ware and software
alternatives to the government and discuss the c rts associated with each
alternative (see CDRL).

TISSS SOW Task (4.1.5)

Evaluate the acceptability of the designed sys, L .. Lne manufacturers dnd
users of MIL-Spec microelectronics. Investigate nether manufacturers will
willingly release proprietary gate and layout in£ tmation to the Government
(assuming it will be protected) and what possitl- -qSS design
modifications or Government actions might facili. . thiu. Analyze the
impact rf this system so that a meaningful and . standard is
promulgated (see CDRL).

TISSS SOW Task (4.1.6)

Perform a preliminary design in accordance with Attachment No. 1, (see
CDRL).

TISSS SOW Task (4.1.7)

Conduct a technical presentation on his design at a conference on the TISSS
program at a time and place, as specified in the Contract Schedule. This
p-eentation shall contain a general introduction to the contractol's
-,,stem and specific information on the tester independent attributes -.f the
ystem. This conference will be held for the purpose of soliciting
.:ommentc from Government and industry representatives on each contractor's
design.

TISSS SOW Task (4.1.8)

Prepare a detailed technical and cost proposal for the implementation of
this design (Phase II) (see CDRL)

TISSS SOW Task (4.2)

(Phase II) The contractor shall develop, implement, and validate his
designed TISSS system and shall deliver it to the Government. This system
shall be in full accordance with the Requirements Baseline (Attachment No.
4), except that the VHDL Simulator shall not be required. The VHSIC data
prep and beta testing requirements set forth in paragraphs 4.2.15 and
4.2.18 will also not be required. VHDL product evaluation tasks shall be
performed. Wi nin the Requirements Baseline the following order of
precedence shall apply: System/Segment Specification, Hardware
Configuration Baseline, Software Standards and Procedures Manual, Software
Development Plan, Software Quality Assurance Plan, and the Software
Configuration Management Plan. All software developed under this task
shall be in full accordance with Attachment No. 1 (DoD-STD-SDS). The
contractor shall:

TISSS SOW Task (4.2.1)

Perform a preliminary design in accordance with Attachment No. 1,
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(DOD-STD-SDS), Section 5.2, including 5.2.1.5 and 5.2.1.6 (see CDRL).

TISSS SOW Task (4.2.2)

Conduct a detailed design in accordance with Attachment No. 1, Section 5.3
with the exception of paragrapns 5.3.1.11, 5.3.1.12, 5.3.1.13, 5.3.2.a and
5.3.2.9 ( ie CDRL).

TISSS SOW Task (4.2.3)

Code and test each TISSS software unit in accordance with Attachment No.
1, Section 5.4 (see CDRL). All computer prograirs developed or assembled
under this contract sh .1 be provided to the Government. Computer programs
shall be provided in at-cordance with Attachment No. 3, dated 84 Feb '7, to
the Contract.

TISSS SOW Task (4.2.4)

Integrate and test the software units in accordance with Attachment No. 1,
Section 5.5 (sEe CDRL).

TISSS SOW Task (4.2.5)

Verify TISSS operation in accordance with Attachment No. 1, Section 5.6,
including 5.6.2.4 (see CDRL).

TISSS SOW Task (4.2.6)

Conduct a configuration management program in accordance with Attachment
No. 1, Section 5.7 (in Section 5.7.2.2, delete the words "in accordance
with DOD-STD-480") (see CDRL).

TISSS SOW Task (4.2.7)

Implement a Software Quality Assurance Program in accordance with
Attachment No. 1, Section 5.8 (see CDRL).

TISSS SOW Task (4.2.8)

Implement planning anJ control procedures for the software development
tasks in accordance w.th Attachment No. 1, Section 5.9.

TISSS SOW Task (4.2.9:

Coordinate the development of the TISSS with the VHSIC Integrated Design
Automation System (IDAS)/VHSIC Hardware Dezariptiun Language (VHDL)
efforts. The contractor shall integrate VHDL into TISSS and shall ensure
that TISSS standards are consistent with VHDL. The contractor shall also
pursue industry coordination fcr TISSS standards by participating in
industry standards groups and presenting TISSS proposals and perspectives.
Participation shall include, as a minimum, the IEEE Standards Coordinating
Committee 20 Automatic Test PrcGram Generation Subcommittee and the IEEE
Computer Society Design Automation Technical Committee Standards
Subcommittee. The contractor shall also pursue coordination with the
Electronic Data Interchange Format (EDIF) project.
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TISSS SOW Task (4.2.10)

Incorporate two fault simulators into the TISSS system. One shall be the
Hierarchical Integrated Test Simulator (HITS), owned by the US Navy, and
one shall be a commercially-available fault simulator tiat shall be
selected using the results from the available software review (see
paragraph 4.1.2 above). Interfaces shall be prepared and delivered so that
both fault simulators are fully interoperable with the TISSS system.

TISSS SOW Task (4.2.11)

Prepare a TISSS Interface Manual to enable others to prepare derivation
software for other CAD databases and translation software for other types
of AMTE (see CDRL).

TISSS SOW Task (4.2.12)

Validate and verify all software developed and implemented in accordance
with the approved Software Test Plan (see paragraph 4.2.1).

TISSS SOW Task (4.2.13)

Provide the capability to validate the adequacy and accuracy of generated
TIDB's and test programs for new devices.

TISSS SOW Task (4.2.14)

Prepare validation test suites for each tool identified by t'e contractor
in the Requirements Baseline. These validation test suites tnall be
limited only by the nonincorporation of the VHDL Simulator. Each
validation test suite shall test each critical tool function as identified
in the Software Test Plans. Each test suite shall consist of both valid
and ir.-lid test cases. Each test suite shall be separately delivered in
two units, one for a published validation test suite and one for a reserved
Governmert validation test suite. Both test suites shall be accompanied by
manuals that describe their use, proper results, improper results, and
pass/fail criteria (see CDRL).

TISSS SOW Task (4.2.15)

(Option). Generate electrical test specifications and electrical test
programs for identified VHSIC chips for direct input to the Government
Baseline VHSIC tester (GenRad GR-18V configuration installed at RADC as of
1 Sep 86). It is desirable to have chip types from more than one VHSIC
fabrication line. Chip types selected shall be primarily random logic as
opposed to memory. For at least one selected chip type, demonstrate the
TISSS capability to automate the generation of test specifications and
zutomatically generate test programs using both behavioral and structural
VHDL models. Using both structural and behavioral models for this chip,
verify the sti-ulus and response correctness of a test vector set supplied
D" -he chip manufacturer and used in the manufacturer's test. Using the
structural model for this chip, the contractor shall obtain the fault
coverage (via fault simulation) for the same vector set. For any
Additional ch.p types selected, the contractor may demonstrate the TISSS
cppability to generate test specifications and test programs using only
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behavioral VHDL models of these chips. Using these behavioral models, the
contractor shall verify the stimulus response correctness of a test vector
set supplied by t'e chip manufacturer and used in the manufacturer's test
of these chips.

TISSS SOW Task (4.2.16)

Provide one (1) organized training course in system theory and operation
upon delivery. This training shall be delivered to a minimum of five,
maximum of thirty Government representatives. The training shall be
separated according to the level of each attendee (e.g., manager,
engineer/computer scientist, technician). This course shall be held at a
time and place as specified in the Contract Schedule (see CDRL).

TISSS SOW Task (4.2.17)

The contractor shall deliver, install, and demonstrate the TISSS at RADC,
Griffiss AFB, N.Y.

TISSS SOW Task (4.2.18)

(Option). Conduct a six-month "beta-site" program after successful
completion of the Functional Configuration Audit and the Physical
Configuration Audit. The contractor shall contract with one firm to: use
the system with at least two VLSI or VHSIC IC's, identify limitations and
failures, submit software change requests, and report all difficulties to
both the contractor and to the Government (see CDRL).

Option not selected, no work performed on this task.

TISSS SOW Task (4.2.19)

Prepare a Preliminary and Final Technical Brochure for the TISSS (see
CDRL).

TISSS SOW Task (4.2.20)

The contractor shall effect coordination with the U.S. Army ERADCOM
"Portability of Test Software" (DAAM-20-84-C-0407) contractor. The TISSS
contractor shall become familiar with the results of the Army contract.
The TISSS contractor shall participate with the Army contractor in his
contract continuation by providing technical information and conducting
interchange meetings as required. The TISSS contractor shall consider the
recommendations made by the Army contractor. Reporting shall be through
the Monthly Status Reports (see CDRL).

TISSS SOW Task (4.2.21)

Provide an Initial Graphics Exchange Specification (IGES) compatible
graphics generation and viewing capability and CAD input capability for
mechanical drawing.

TISSS SOW Task (4.2.22)

Provide a graphical data base report capability for the data base
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management system used by TISSS. Provide the SQL Graph software required
to provide this capability.

TISSS SOW Task (4.2.23)

Define the Eclectic Capability for Logistics Information and Product
Support for Electronics (ECLIPSE), Operations Concept: The ECLIPSE was
previously named the LRM TISSS, but due to confusion with the VHSIC TISSS
architecture and funding it has been renamed. Define a computer based
system for DoD management of logistic technical data, following
Computer-aided Acquisition and Logistics Support (CALS) standards and
architecture, for life cycle support of Line Replaceable Modules (LRMs) and
Printed Circuit Boards (PCB). Emphasis for this structure, to be defined
in the Operational Concept Document and System/Segment Specification shall
be on digital, analog, and mixed analog/digital (hybrid) LRMs and PCBs.
Majo- system interfaces shall be defined for product definition input
formats for all data or information. Also, define product definition
output in applications independent formats for information subsets that are
selected for specific applications. Define exchange standards that could
be used to transmit the product definitions between dissimilar systems.
Define the information flow and information processing requirements of each
of the major functions in the U. S. Air Force MASA hardware support
concept; reference the Hardware and Software Support Concept attachments to
the draft AFR 800-45. Develop operational scenarios, including Avionics
integrity Program (AVIP), integrated diagnostics, failure data collection,
environmental information from a Time Stress Measurement Device (TSMD),
logistics support analysis records, feedback to the MASA Unified Data Base
(MUDB) and MASA Integrated Support Facility (ISF), and LRM and PCB spares
reorocurement, with identification of deployment options, user interaction,
human and facility resources, and user skill levels. Specific operational
needs shall be identified through a combination of literature searches,
teleohone contacts, and site visits with prospective users at government,
vendor, and contractor facilities. To the maximum extent feasible the
system shall make use of VHSIC TISSS tools, data, and data base management
tools and concepts. A total support environment shall be defined, not
stand alone tools. (See CDRL).

TISSS SOW Task (4.2.24)

Define the ECLIPSE Product Definitions and Exchange Standards: Define the
product definition data required at each level of information utilization,
consistent with the life cycle support needs of the LRMs and PCBs. For the
levels to be addressed, LRM and PCB, all data necessary to accomplish tasks
associated with test program set development and integrated diagnostics
analysis shall be defined. Define information standards for the MUDB in
accordance with MASA objectives, as stated in the MASA Support Requirements
Document. Review current U. S. Air Force sponsored efforts for
electronic Product Description Exchanae Specification (PDES) and determine
near term and potential long term applicability to ECLIPSE. These
information standards shall include, but not be limited to, the languages
recui ad to support test specifications and other LRM products, the
environment required to use the languages, and the data model, which
includes standards for the format, relationships, and manipulation
orocedures for the MUDB and CALS Core Soecifications (MIL-STD-1840A
(Draft)'. In addition, interchange formats for impocting and exporting to

A-6



FINAL TISSS STATEMENT OF WORK Page A-7

other systems or tools which are presently defined shall be specified. The
MIL-Standards that affect the specification of the information standards
shall be identified and evaluated, their potential role in-ECLIPSE defined,
and any necessary extension or modifications to the MIL-Standards shall be
proposed and rationale provided. Attendance at necessary industry and
government information and data standards meetings shall be performed. The
status and applicability of these and other industry and government
standards and formats shall be defined and reported in a standalone volume
of the Concept Exploration Technical'Report (CETR). in addition,
evaluation for ECLIPSE use of these standards and formats shall be made
(See CDRL).

TISSS SOW Task (4.2.25)

Define the ECLIPSE Functional Requirements: Derive functional requirements
of an ECLIPSE from the operational concept baseline defined in 4.2.23.
These functional requirements shall satisfy the needs of the MASA concept
fnr the U. S. Air Force and CALS implementation (See CDRL).

TISSS SOW Task (4.2.26)

VHSIC TISSS Evaluation: Evaluate the VHSIC TISSS concepts to establish the
ability to support any of the ECLIPSE operational concepts identified in
this study for the LRM and PCB level of electronic integration. Special
attention shall be directed at establishing the feasibility of migrating
component level design, specification, and test information to support LRM
and PCB design, development,-qualification, test, and maintenance. The
feasibility for utilization of the VHSIC TISSS Data Base (TDB) or an
extension of the TDB to satisfy ECLIPSE support needs shall be determined.
The VHSIC TISSS system and architecture shall be evaluated for utilization
of VHSIC TISSS subsystems in the ECLIPSE, including the VHSIC Hardware
Description Language (VHDL) tool set that may be used for design
verification in the VHSIC TISSS (See CDRL).

TISSS SOW Task (4.2.27)

Evaluate Tools: Evaluate existing tools, such as analog and digital
simulators, and test program generators, for possible integration into the
ECLIPSE. These tools may be either government at industry developed.
Based on the functional requirements, the contractor shall identify and
analyze those software packages that shall satisfy the support and
maintenance needs of MASA, including AVIP data analysis tools, if
available, and report on their status, availability, ownership, cost,
operation, and potential benefit. Any relevant tools shall be evaluated
including tools under development by the U. S. Navy, integrated
Diagnostics Support System (IDSS) program. The contractor shall coordinate
with the U. S. Navy IDSS Program to ensure that duplication of effort and
recommended development overlap is avoided. Additional tools to be
evaluated shall be the toels under development by the U. S. Army, the
Test Engineers Advisor !TEA) and AI/UUT programs. Also, the applicability
of the Automatic Test Equipment Support System (ATESS) tools, currently
under development by AFLC, shall be evaluated. Additional tools requiring
development will be identified and defined. In addition, the existing AFLC
databases for data storage and retrieval, for example REMIS and ATOS, shall
be evaluated and a list of each database's inputs, outputs, and functions
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will be defined by the other ECLIPSE contractor. Coordination with the
other ECLIST contractor shall be required to ensure the results of this
data base evaluation is integrated into the ECLIPSE tool environment (See
CDRL).

TISSS SOW Task (4.2.28)

Evaluate Host Environments: Evaluate the VHSIC TISSS compatible hardware
and software required to host the ECLIPSE. Specific attention shall be
paid to developing a system that can be easily transported to industry and
used within a wide variety of automation environments. Factors to be
considered should include user friendliness, software transportability, the
types and specifications of host computers required for the development and
operation tisks, and run-time libraries. The system organization and
communication requirements, e.g. distributed versus centralized database,
etc., shall also be addressed (See CDRL).

TISSS SOW Task (4.2.29)

Specify System Requirements: Based upon the defined operational concept
baseline, develop the ECLIPSE requirements. Define external interfaces,
information objects for database access by tcois and information transfer,
on-line data flow, define data required to be downloaded from aircraft,
identify formats for the information required fro= the aircraft, and system
functions along with ECLIPSE measures of performance (See CDRL).

TISSS SOW Task (4.2.30)

Develop Concept Exploration Technical Report (CETR): The CETR shall
contain a list of Government agencies and industry organizations
interviewed, minutes of DoD and DoD/industry meetings and reviews, a
written description of system functions and characceristics that are
recommended for full scale engineering development. in addition, all
assumptions made during concept development shall be stated and identified
as such. The CETR shall contain the names, addresses, agencies, office
symbols, and phone numbers of all people contacted du.ing this effort. The
people interviewed shall be listed according to meetings interviewed at and
organization affiliation (See CDRL).

TISSS SOW Task (4.2.31)

Coordination with Other ECL:PSE Contractor: Coordinate with the additional
ECLIPSE effort contracted by the 3owernment. This coordination shall
consist of full and open disclosure of all data gathered by and generated
for this ECLIPSE effort. This coordination shall ensure that the other
ECLIPSE efforts have inputs into the development of all CDRLs to be
developed under this effort. The contractor shall conduct interchange
meetings with other available ECLIPSE contractors. Reporting cf
coordinations and all monthly accomplishments shall be through the Monthly
Status Reports 3Se CDRL).

TISSS SOW Task (4.2.32)

ECLIPSE insert:on Plan: Conceptualize and document a :op level plan Eor
ECLIPSE insertion into the USAF Logistics Com-and 'AFLC). This pian wil
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consist of only identification of AFLC and other Air Force organizations to
interface to ECLIPSE. The contractor shall provide a preliminary line of
code (LOC) estimate for the ECLIPSE (see CDRL).

TISSS SOW Task (4.3)

The contractor shall conduct the following reviews at times and places as
specified in the Contract Schedule. These shall be in accordance with
Attachment No. 2, MIL-STD-1521B (USAF) "Technical Reviews and Audits for
Systems, Equipment, and Computer Software", with the exception of section
.4, 5.1.2, 5.1.9, and 5.1.11. The offerer may propose changes in the
review process in accordance with Section 100.4.3.

TISSS SOW Task (4.3.1)

(Phase I) One kick-off meeting. This meeting shall be held for the purpose
of familiarization of personnel, review and discussion of technical issues
(see CDRL).

TISSS SOW Task (4.3.2)

(Phase I) One Preliminary Specification Review (PSR). This review shall be
held for the purpose of reviewing progress and receiving technical comments
from the. Government during the design phase (see CDRL).

TISSS SOW Task (4.3.3)

(Phase I) One interim design phase presentation (see CDRL).

TISSS SOW Task (4.3.4)

(Phase II) Two Critical Milestone Reviews (CMR). These CMR's shall be held
for the purpose of reviewing progress and receiving technical comments from
the Government (see CDRL).

TISSS SOW Task (4.3.5)

(Phase I) Quarterly interim progress reports (see CDRL).

TISSS SOW Task (4.3.6)

(Phase II) Two open reviews for industry, Government, and academic
personnel. ThL first shall be held in an Eastern US location twelve months
after Phase II award. The second shall be held two months prior to the
Functional Configuration Audit in a location of the contractor's choice.

TISSS SOW Task (4.3.7)

(Phase II) A Functional Cconfguratign Audit and Physical Configuration
Audit to be held at RADC upon completion of the installation of TISSS.

TISSS SOW Task (4.3.8)

(Phase II) A final presentation witin two weeks of contractor's receipt of
Government comments on the final tezhnical report (see CDRL).
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TISSS SOW Task (4.3.9)

Kick-off Meeting. This meeting shall be held for the purpose of
familiarization of Government personnel (all services). Review and
discussion of technical issues associated with the ECLIPSE study effort
shall be conducted (See CDRL).

TISSS SOW Task (4.3.10)

Technical Interchange Meeting (TIM): Conduct a TIM with Government and
industry to present the status of technical and programmatic progress made
to date in performance of the ECLIPSE study effort. The presentation will
be given to approximately two hundred (200) Government and Industry
personnel and shall not last more than three (3) days. 'One day of the TIM
shall be used to present preliminary developed DoD CALS product definitions
and exchange standards to industry and Government participants for comment
(See CDRL).

TISSS SOW Task (4.3.11)

LRM Standards Meeting Participation.* Participate in a DoD and industry
review of proposed standards for LRMs to be performed by the USAF ASD
contractor. One technical representative shall be present. The status of
technical and programmatic progress made to date in the performance of the
ECLIPSE study effort shall be presented (See CDRL).

TISSS SOW Task (4.3.12)

System Requirements Review (SRR). Conduct an SRR seven months after award.
This review shall be held in accordance with MIL-STD-1521B. The
Operational Concept and System Segment Specification document contents
shall be presented. The presentation will be given to approximately two
ht.ndred (200) Government and industry personnel and shall not last more
than four (4) days. One (1) day of the SRR shall be used to present
developed DoD CA'.S product definitior and exchange standards to industry
and Government for comment (See CDRL).

TISSS SOW Task (4.3.13)

Final Government Meeting. Conduct a final Government meeting in
conjunction with the SRR. This meeting shall be held on the last day of
the SRR to familiarize Government representatives with the results and
future impacts of the ECLIPSE concept exploration (see CDRL).

TISSS SOW Task (4.4) (Option).

Develop the VHDL/TVL Validation Software in accordance with Attachment No.
5 to the Statement of Work. Deliver, install, and demonstrate this stand
alone simulation validation software on the TISSS host computer at RADC.
All software developed under this task shall be in full accordance with
Attachment No. 1 (DoD-STD-SDS) except where explicitly deleted in the SOW.
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APPENDIX B

TISSS FOUR COLOR BROCHURE

(NOT INCLUDED)
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APPENDIX C

SELECTION OF COMPUTER SOFTWARE CONFIGURATION ITEMS (CSCIS)

The following is extracted from MIL-STD-483A, 4 Jun 85, Configuration
Management Practices for Systems, Equipment, Munitions, and Computer
Programs, Appendix XVII, Criteria for Selecting Configuration Items.
"170.7 Effects of Selecting Too Many Configuration Items. Too many

configuration items may result in effects hampering visibility and
management rather than improving it. These effects include:

1. Increased administrative burden in preparing, processing, and
status reporting of engineering changes which tends to be
multiplied by the number of configuration items.

2. Increased development time and cost as well as possibly creating
an inefficient design.

3. Possible increase in management effort, difficulties in
maintaining coordination and unnecessary generation of paper
work."

The table below uses the questions to be asked and criteria for evaluating
the answers found in MIL-STD-483A paragraph 170.9 Configuration Item
Selection Checklist. Each question is answered for each TISSS "CSCI" and
evaluated for results. Conclusion: TISSS should be two CSCIs.
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SELECTION OF COMPUTER SOFTWARE CONFIGURATION ITEMS (CSCIS) Page C-2

+-----------------------------------------------------------+-

IUICIDIAIOIAIAIMIVIHIHI
I Question IIIIPIIIUIUIPIDIIISISILI

----------------------- +-+-+-+-+-+-+-+-+-+-+-

a. Is it critical high risk, and/or a safety item? IINININININININININININI
111111111 1 11

lb. Is it readily identifiable with respect to size, 11 1 I I I 1 1 1 1 1
shape, and weight (hardware)? IINININININININININININI

111111111 1 11
jc. Is it newly developed? IIYIYIYIYIYIYIYIYIYININI

1l 1 1 1 1 1 1 1 1 1
Id. Does it incorporate new technologies? IINININININIYININIYININI

le. Does it have an interface with hardware or software I 1 1 1 1 1 1 1 1 1 1 1
I developed under another contract? IIYINININININIYIYIYIYIYII
if. With respect to form, fit or function, does it I I
I interface with other configuration items whose ] I

configuration is controlled by other entities? IIYINININININIYIYIYIYIYI
I

1g. Is there a requirement to know the exact I I
configuration and status of changes to it during I I
its life cycle? IINININININININININININI

+--------------------------------------------------------- -- -+-- -+-+-+-+--

IUICIDIAIO IAIAMIVIIH I
I IIIPIIIUIUIPIDIIISISILI

1. Number of Yes answers. I1311111lll1213131412121

2. Did you answer Yes to more than 50% of the
questiens? IININININININININIYININI

3. According to 1i1T.-STD-483A, should this CSCI have
been designated a CSCI? IININININININININIYININI
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APPENDIX D

PATENT APPLICATION

TITLE: A Process for the Generation of Test Programs from Tester
Independent Test Specifications

INVENTORS: L. Shombert, R. Rolfe, J. Garnett

This disclosure covers the process whereby the TISSS
Postprocessor translates a TISSS test specification into a
GR-18 test program. The Postprocessor has already
demonstrated its flexibility in adapting to the needs of
Components Engineering and all the evidence indicates that
it will be a very powerful tool once TISSS has been
integrated into the test environment. No other comparable
function is available from external suppliers. Test
generation software from tester manufacturers tends to be
inflexible and is, of course, targeted at a single tester.
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A Process for the Generation of Test Programs from
Tester Independent Test Specifications

D.1 POSTPROCESSOR OPERATION - INTRODUCTION

The purpose of the TISSS Postprocessor is to convert a TISSS
test specification, which is independent of any particular
tester, into a tester specific test program. The current
TISSS Postprocessor is targeted at the GenRad GR-18. The
Postprocessor data flow is shown in Figure 1. The inputs
are the tester independent test specification, tester
specific (but device independent) template code, and tester
specific, site specific configuration files.

The Postprocessor generates a test program by altering
template code, which is basically boilerplate test code,
according to the data contained in the test specification
and the configuration files. This disclosure is concerned
with the process whereby the template code is altered.

D.2 POSTPROCESSOR OPERATION - THEORY

The key to Postprocessor operation is the input template
code. Template code consists of plaintext interspersed with
directives. Directives are identified by a prefix character
and obey a defined syntax. Plaintext is any sequence of
z,.ro or more characters that does not contain the directive
prefix character.

The Postprocessor expands template code by copying plaintext
verbatim to the output until a directive is reached.
Directives are not copied to the output but are treated as
instructions to the Postprocessor. However, a directive may
generate text that is written to the output. A directive
may also result in a change in control of the Postprocessor,
for example, causing the Postprocessor to read from a
different piece of template code, or write to a different
output. Once the directive has been executed, the
Postprocessor resumes copying plaintext to the output,
waiting for another directive. This process is show in
Figure 2 in flowchart form.

The Postprocessor is able to generate a test program because
some directives operate on data from the test specification.
Some directives allow this information to be inserted into
the output, while others guide Postprocessor expansion. For
example, a directive might cause a voltage from the test
specification to be written to the output. The surrounding
plaintext, when processed as a test program, might instruct
a tester to set a power supply to the test specification
voltage.
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The most important characteristic of the Postprocessor is
that there are no restrictions placed on the plaintext.
Furthermore, directives that generate output gene'te the
smallest possible amount of output, so as to reduce the bias
towards a particular format or syntax for the output. As a
result, the Postprocessor can generate GR-18 test programs,
tabular reports, and VAX VMS DCL command procedureF with
equal ease.

D.3 POSTPROCESSOR OPERATION - IMPLEMENTATION

In the current TISSS Postprocessor, directives consist of
the prefix character "#" followed by a name and a set of
parenthesis surrounding a (possibly empty) list of
arguments. A special type of directive is the token, which
consists of the prefix character "#" followed by a set of
parenthesis surrounding a name. A third type of directive
is the prefix insertion directive which is the string "##"

Examples of directives are:

#temperature()
#config(FIXTURE, BOARDID)
#(VOLTAGE.VALUE)

Note that all directives are immediately identifiable by the
prefix character. Furthermore, it is possible to exactly
determine the end of the directive, either a close
parenthesis or, in the case of the prefix insertion
directive, the second "#". The important point is that a
directive may be extracted from template code regardless of
the surrounding plaintext.

The tester independent test specification is written in the
TISSS Test Description Language (TDL). In essence, a test
specification in TDL is a sequence of test requests (called
test macros) that resemble procedure calls in high level
languages. An example test macro is shown in Figure 3.
Note that it is a list of parameters, each of which is
assigned a value in the test specification.

A test macro represents a particular test method, such as a
means of testing power supply current. The Postprocessor,
under control of a master template, associates test macros
from the test specification with test macro templates from a
template library. The test macro template plaintext
contains the test method, and directives in the test macro
template "customize" the output to perform the test
according to the values assigned to the various test macro
parameters. A possible test macro template for the test
macro of Figure 3 is shown in Figure 4, and the output, if
run through the Postprocessor is shown in Figure 5. Only
token directives are shown, which extract data values from
the test specification.
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The TISSS Postprocessor provides directives that allow a
template to step through the test plan (control when the
next test macro is processed). The Postprocessor also
provides directives to conditionally expand template code.
This is important when different code must be expanded for
different ranges of test macro parameter values. Other
dir( :tives are provided to manipulate tester resources.

D.4 POSTPROCESSOR OPERATIONS - EXTENSIONS

The following extensions are not implemented in the current
TISSS Postprocessor, but are part of the overall concept:

1. This process is not limited to text, although textual
templates are the easiest to handle. The process could

.handle, for instance, 8-bit bytes, 6-bit bytes, 16-bit
words. The process can even be built around bit
strings, in which case the input and output would be
binary files.

2. This process is not limited to the functions
(directives) specified for the TISSS Postprocessor.

3. This process includes the capability to create and
modify local variables from within the Postprocessor,
and to make decisions based on those variables. For
instance, a variable named TEST COUNT could be declared
and set to zero, and then incremented whenever a new
test was generated. Whenever TEST COUNT reached a
multiple of 10, a special template would be processed.

4. This process includes the capability to allow a user to
define new directives. Such a capability could be
developed using a Lisp-like interpreter.

5. This process includes the capability to translate source
other than TISSS Test Description Language, however, the
source must follow the TDL structure of high-level
function calls inside nested loops.
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FIGURE C-i POSTPROCESSOR DATA FLOW
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FIGURE C-2 TEMPLATE EXPANSION FLOW CHART
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test macro A TEST MACRO
(SYMBOL :-STRING -> "Any string
LOW VOLTAGE VOLTAGE VALUE ->

VALUE -> 0.0 V,
ACCURACY => 0.1 V),

HIGH VOLTAGE VOLTAGE VALUE ->
VALUE m> 5 V,-
ACCURACY -> 0.1 V),

COUNT POSITIVE -> 5);

FIGURE 3
Sample test macro

-- !!#(symbol)!!

for i in [1..#(COUNT)] loop
PUT((#(HIGHVOLTAGE.VALUE) - #(LOW VOLTAGE.VALUE)) / #(COUNT)) * i)

end loop;

FIGURE 4
Sample test macro template

-- !!Any string !!
for i in [1..5] loop

PUT((5V - 0.OV) / 5 * i);
end loop;

FIGURE 5
Expanded test macro template
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